Structure–physical property relationships in peroxide-cured butadiene–styrene copolymers

Authors


Abstract

Structure–physical property relationships in high-vinyl butadiene–styrene copolymers have been determined for samples cured with dicumyl peroxide under the same conditions. Three different structures, butadiene–styrene–butadiene (B–S–B) triblocks, butadiene–styrene (B–S) diblocks, and random butadiene–styrene copolymers, have been examined. Flexural modulus increases with increasing styrene content owing to the inherent stiffness of a polystyrene backbone. Swelling increases whereas hardness and heat distortion temperature decrease with increasing styrene content. This behavior is explained by the decrease in crosslink density with increasing styrene content in all structures. Heat distortion temperatures of the B–S–B and B–S networks are superior to the heat distortion properties of the random structures. The B–S–B structure is the most solvent resistant, followed by the random copolymers, with the B–S structures swelling to the greatest extent. Swelling differences between the B–S–B and random networks decrease with increasing styrene content, while swelling differences between the B–S–B and B–S networks increase with increasing styrene content. These results are explained by the nature of the crosslinking reaction and the number of loose ends present in each network.

Ancillary