SEARCH

SEARCH BY CITATION

Abstract

The thermomechanical behavior of particle composites was investigated in their transition region. In particular, the value of the glass-transition temperature Tg, which constitutes an upper limit for the structurally important glassy region, was examined. According to experimental evidence existing in the literature the introduction of a reinforcing filler in a polymeric matrix causes Tg of the latter to increase, unless mechanical imperfections counterbalance the reinforcing effect or even produce a Tg for the composite which is lower than that of the matrix. Based on mechanical theories, valid for the mechanical moduli of viscoelastic particle composites, a model was introduced that explains why the glass transition of composite materials may be reduced in some cases, whereas it may be increased in others. The concept of interphase between inclusions and matrix was used for the development of the model. Interphase is assumed to be a region, which is created between the matrix material and the filler particles, both considered as homogeneous and isotropic, whose thermomechanical properties and volume fraction may be determined from the overall thermomechanical behavior of the composite.