Chemical structure of the plasma-polymerized pyridine film produced on a glass reactor wall by means of the plasma technique in which the pyridine vapor was electronically excited by high-frequency power under a reduced pressure was elucidated. The polymer was highly hydrophilic and was soluble to some of the polar organic solvents so that nitrogen-containing polar functional groups were predicted to participate in the chemical structure of the polymer molecules. 1H-NMR, 13C-NMR, and IR spectroscopies, high-resolution mass spectral data, and number-average molecular weight determination with some aid of microelemental analysis revealed the presence of various functional groups such as imine, nitrile, amine, pyridine ring, its N-oxide, and even amide. The oxygen atoms involved in the last two groups were supposedly introduced by contact with ambient air after the plasma process. The hydrophilic nature of the polymer which was essential for preparing reverse osmosis membrane was therefore due to the overall hydration effect of these polar functional groups.