Comparison between a linear and a branched low-density polyethylene



Two low-density polyethylenes, a linear low-pressure (LLDPE) and a branched high-pressure (LDPE), have been compared. Their shear and extensional behavior and melt fracture phenomena have been investigated, and some mechanical and optical properties of their blown films have been measured. The rheological analysis showed major differences between the samples, both in shear viscosity and in elongational viscosity. The LLDPE exhibited two types of melt fracture, the first of which—a fine scale extrudate roughness—was not shown by the LDPE and appeared at a very low shear rate. The concomitance in LLDPE of a high shear viscosity and a low elongational viscosity and the presence of melt fracture at low shear rate resulted in its more difficult processing into film. The mechanical properties of the LLDPE film approached those of high-density polyethylene while the optical characteristics were in the range of LDPE. Such a coexistence of properties makes LLDPE an interesting material for film production.