Structure and viscoelastic properties of epoxy resins prepared from four-nuclei novolacs



The relation between the structure and the viscoelastic properties of seven kinds of epoxy resins was studied. Seven tetraglycidylethers were synthesized from four-nuclei novolacs in which the positions of methylene linkage or number of kind of substituents were different. These epoxy compounds were cured with diaminodiphenylmethane as a hardener. From the viscoelastic properties of the fully cured resins with the hardener, characteristic properties such as glass transition temperature (Tg), average molecular weight between crosslinking points (M̄c), and front factor (ϕ) were obtained. It was concluded that higher linearity in the main chain of epoxy resins gave a cured resin with a higher Tg, a smaller M̄c, and a larger ϕ.