Coatings and surface modification by methane plasma polymerization

Authors


Abstract

Polymers formed from plasma-polymerized methane were employed to modify the surface properties of silicone rubber membrane. Polymers were evaluated based on the energy input parameter W/FM, where W is the discharge power, F is the monomer flow rate, and M is the molecular weight of the monomer. Dealing with the characteristics of plasma polymerization and the deposited polymer film, the effect of pumping rate on deposition rate and the coating thickness, surface energy, and gas permeabilities of methane-plasma-polymer-coated silicone rubber membrane were investigated in three plasma regions. Because more reactive species are expelled at high pumping rates, the monomer-deficient region is reached at lower W/FM in the high pumping rate system than that in the low pumping rate system. The composite parameter W/FM had a strong influence on coating thickness, gas permeability, surface energy, and the polar component of the surface energy but little effect on its dispersion component. Examination of gas permeabilities indicated that coating thickness was another important controlling factor on the properties of plasma polymer.

Ancillary