SEARCH

SEARCH BY CITATION

Abstract

XPS, SEM, SSIMS, FTIR-ATR, water-in-air, and air-in-water contact angle measurements have been used to unambiguously characterize the locus of failure of PP/epoxy joints. In the case of untreated PP, the fracture has been found adhesive, whereas in oxygen plasmatreated PP, it is cohesive, within bulk PP, but close to the modified PP-bulk PP interface. The smoothness of fracture surfaces allowed us to exclude mechanical interlocking effects. Shear-strength measurements showed that the mechanical strength of the joint was improved by plasma treatment. Preliminary thermal equilibration of the plasma-treated PP sample and changes in the curing cycle of the epoxy resin did not change either the locus of failure or the shear strength of the joint. The reason is probably because the number of polar functions left at the surface after thermal equilibration is sufficient to induce adhesion. The mechanical strength of the PP surface layer may be the determining factor. Fracture energy calculations showed that the observed locus of failure is the same as predicted on the basis of surface energy considerations.