Plasticization of poly(lactic acid) with oligomeric malonate esteramides: Dynamic mechanical and thermal film properties



Two oligomeric malonate esteramides and an oligomeric malonate ester were synthesized with the intention to plasticize poly(lactic acid), PLA. The synthesis was performed by reacting diethyl bishydroxymethyl malonate (DBM) with adipoyl dichloride and one of two diamines, that is, triethylene glycol diamine (TA) and polyoxypropylene glycol diamine (PA), or triethylene glycol (TEG), giving three platicizing agents denoted as DBMATA, DBMAPA, and DBMAT, respectively. The synthesis products were characterized by size exclusion chromatography and Fourier transform infrared spectroscopy, and blended with PLA at a concentration of 15 wt %. Dynamic mechanical analysis, differential scanning calorimetry, and tensile testing were used to investigate the physical properties of films from the resulting blends. All three plasticizers decreased the glass transition temperature of PLA, and the largest decrement was observed for PLA/DBMATA. Films of DBMATA and DBMAT showed enhanced flexibility in strain at break as compared to neat PLA. Subsequently, it was found that thermal annealing of the plasticized materials (4 h at 100°C) encouraged cold crystallization, inducing phase separation in the blends, and caused them to regain the brittleness of neat PLA. On the other hand, by aging (6 weeks) the blends at ambient conditions, cold crystallization could be avoided and the flexibility in the films maintained. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 992–1002, 2005