Preparation, characterization, and composites from low formaldehyde emission urea–formaldehyde–casein copolymer



A modified urea–formaldehyde resin was synthesized by the condensation of urea and formaldehyde in the presence of varying proportions of casein up to 25% (w/w) of urea under alkaline conditions. All the prepared resins were characterized by free-formaldehyde content, viscosity measurements, and number-average molecular weight determination by vapor pressure osmometry and IR spectroscopy. Their curing kinetics were studied isothermally and by differential scanning calorimetry on dynamic runs. The resin samples were cured isothermally at 60, 80, and 100°C using ammonium chloride and hydroxylamine hydrochloride as curing agents. The isothermal curing study was also performed with hexamine at 120°C. Cured resins were characterized by IR and thermogravimetric analysis. The resin samples were employed for the fabrication of glass fiber and jute fiber reinforced composites by maintaining 2 : 3 and 3 : 2 proportions of resin/reinforcement, respectively. The prepared composites were tested for their mechanical properties and resistance toward various chemicals. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 531–537, 2005