Get access

Moisture sorption of a three-dimensional braided carbon fiber–epoxy composite under different media



A three-dimensional braided carbon fiber–epoxy (C3D/EP) composite was prepared by the vacuum-assisted resin transfer molding (VARTM) technique. Its moisture absorption behavior under different media was characterized and compared with a unidirectional composite. Similar to the unidirectional composite, diffusion in the 3D composite obeys Fick's second law of diffusion when immersed in distilled water and phosphate-buffered saline. In HCl and NaOH solutions, no Fickian behavior was observed. The similarity between the unidirectional and 3D composites suggests that fiber structure does not change diffusion pattern. However, the two composites showed different diffusion parameters (k, D, and Me) in each medium studied. The 3D composite showed lower k, D, and Me values because of its stronger hindrance effect to transport of moisture molecules. Diffusion in PBS is slower than that in distilled water because of the presence of heavy ions, but the diffusion pattern remains unchanged. In HCl, the diffusion behavior of the two composites cannot be described by Fick's law. In addition, the k value calculated from the initial linear part of the moisture sorption curve is much lower than that in distilled water. Diffusion in NaOH is unusual; the uptake initially increases rather rapidly but quickly drops, which is likely caused by the extensive solubility of the polymer matrix. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 507–512, 2005