Crystal structures and their effects on the properties of polyamide 12/clay and polyamide 6–polyamide 66/clay nanocomposites



Both polyamide 12 (PA 12)/clay and polyamide 6–polyamide 66 copolymer (PA 6/6,6)/clay nanocomposites were prepared by melt intercalation. The incorporation of 4–5 wt % modified clay largely increased the strength, modulus, heat distortion temperature (HDT), and permeation resistance to methanol of the polyamides but decreased the notched impact strength. Incorporation of the clay decreased the melt viscosities of both the PA 12 and PA 6/6,6 nanocomposites. Incorporation of the clay increased the crystallinity of PA 6/6,6 but had little effect on that of PA 12, which explained why the clay obviously increased the glass-transition temperature of PA 6/6,6 but hardly had any effect on that of PA 12. The dispersion and orientation of both the clay and the polyamide crystals were studied with transmission electron microscopy, scanning electronic microscopy, and X-ray diffraction. The clay was exfoliated into single layers in the nanocomposites, and the exfoliated clay layers had a preferred orientation parallel to the melt flow direction. Lamellar crystals but not spherulites were initiated on the exfoliated clay surfaces, which were much more compact and orderly than spherulites, and had the same orientation with that of the clay layers. The increase in the mechanical properties, HDT, and permeation resistance was attributed to the orientated exfoliated clay layers and the lamellar crystals. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4782–4794, 2006