Get access

Effect of polyisocyanate hardener on adhesive force of waterborne polyurethane adhesives

Authors

  • Mohammad Mizanur Rahman,

    1. Department of Organic Material Science and Engineering, Pusan National University, Busan 609-735, Korea
    Search for more papers by this author
  • Han-Do Kim

    Corresponding author
    1. Department of Organic Material Science and Engineering, Pusan National University, Busan 609-735, Korea
    • Department of Organic Material Science and Engineering, Pusan National University, Busan 609-735, Korea
    Search for more papers by this author

Abstract

A series of waterborne polyurethane (WBPU)/hardener adhesives were obtained from mixing of WBPU containing different types of polyol as a soft segment with aliphatic and aromatic polyisocyanates hardeners. By characterization of allophanate and biuret bonds formed from the reaction of hardener NCO with urethane/urea groups of WBPU using 1HNMR spectroscopy. It was found that the optimum number ratio (molar ratio) of NCO group of hardener to urethane/urea group of WBPU that shows the highest adhesion force was depended on the type of hardener (aliphatic/aromatic polyisocyanate) and dimethylol propionic acid (DMPA) content (total content of urethane/urea groups); however independent of the type of soft segment (polyol) of WBPU. The optimum number ratio (molar ratio) of NCO group of aromatic polyisocyanate hardener to urethane/urea was higher than that of aliphatic hardener to achieve the highest adhesion force of WBPU. The adhesive force increased with increasing hardener content up to the optimum point and then decreased. Poly(tetramethylene adipate glycol) (PTAd) based WBPUs with aliphatic hardener show higher adhesive force than Poly(tetramethylene oxide glycol) (PTMG) and aliphatic hardener-based WBPUs at the optimum number ratio (molar ratio) of NCO group of hardener to urethane/urea group of WBPU. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3663–3669, 2007

Get access to the full text of this article

Ancillary