• nanocomposites;
  • microscopy;
  • solution casting;
  • transparency;
  • thermal properties


The aim of this work was to develop well dispersed nanocomposites, in a non water soluble polymer using a non aqueous, low polarity solvent as a dispersion medium. The nanoreinforcements were cellulose whiskers and layered silicates (LSs) and matrix was cellulose acetate butyrate (CAB). Before nanocomposite processing, a homogenizer was used in combination with sonification to achieve full dispersion of the nanoreinforcements in a medium of low polarity (ethanol). After processing, the cellulose nanowhiskers (CNW) showed flow birefringence in both ethanol and dissolved CAB, which indicated well dispersed whiskers. The microscopy studies indicated that the processing was successful for both nanocomposites. The CNW showed a homogeneous dispersion on nanoscale. The LS nanocomposite contained areas with lower degree of dispersion and separation of the LS sheets and formed mainly an intercalated structure. The produced materials were completely transparent, which indicated good dispersion. Transparency measurements also indicated that the nanocomposite containing CNW showed similar performance as the pure CAB. Dynamic mechanical thermal analysis (DMTA) showed improved storage modulus for a wide temperature range for both nanocomposites compared with the pure CAB matrix. This study indicated that CNW have a potential application in transparent nanocomposites based on fully renewable resources. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009