• negatively charged hybrid materials;
  • adsorption;
  • sol–gel process;
  • heavy metal ions;


A series of novel negatively charged hybrid materials were prepared via sol–gel process and a subsequent epoxide ring-opening reaction. The coupling reaction was conducted between 3-glycidoxypropyltrimethoxysilane (GPTMS) and tetraethoxysilane (TEOS), which was confirmed by FTIR spectra. TGA, and DrTGA analyses showed that their thermal stabilities were higher and the optimal molar ratio of GPTMS and TEOS was equal to 1 : 1. The ion-exchange capacities (IECs) exhibited that they were related to the amount of anionic groups in the hybrid materials, indicating that the negatively charged properties of the hybrid materials could be artificially controlled via the adjustment of silica in these charged hybrid materials. The adsorption properties for Pb2+ and Cu2+ ions revealed that these hybrid materials were able to absorb heavy metal ions, suggesting that they have potential applications in the separation and recovery of environmentally hazardous substances. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009