• Huperzine A;
  • molecular imprinting;
  • molecular recognition;
  • solid phase extraction;
  • Huperzia serrata


On the basis of the non-covalent interaction between template and monomer, porous molecularly imprinted polymers (MIPs) were synthesized by a thermal-initiated polymerization method using huperzine A as template, acrylamide, or methacrylic acid as function monomer, ethylene glycol dimethacrylate as cross-linking agent. The interaction between template and functional monomers was studied by UV spectrophotometry, which showed a formation of huperzine A-monomer complexes with stoichiometric ratio of 1 : 2 in the pre-polymerized systems. The resultant MIP particles were tested in the equilibrium binding experiment to analyze their adsorption ability to huperzine A, and were characterized by Fourier Transform Infrared (FTIR) study. The recognition properties of MIP were estimated in solid-phase extraction by selecting four compounds (isolated from the Chinese herb Huperzia serrata) as substrates, and were compared with and prior to those of the NIP. High affinity and adsorption of MIP1 which was prepared in chloroform with huperzine A as imprinted molecule, and acrylamide (AM) as functional monomer, made an attractive application of MIP1 in separation processes. In final, using MIP1 solid-phase extraction micro-column, huperzine A was enriched and separated from the real extraction sample of Huperzia serrata. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009