SEARCH

SEARCH BY CITATION

Keywords:

  • clay;
  • flame retardance;
  • nanocomposites;
  • polyolefins;
  • silicones

Abstract

In this article, the combination of silicone rubber (SR) elastomer with synthetic iron montmorillonite (Fe-MMT) to form a kind of new flame-retardant system based on an ethylene–vinyl acetate (EVA) copolymer is first reported. Also, the flame retardancy of the EVA/SR/Fe-MMT hybrid are compared with that of EVA/SR/natural sodium montmorillonite. The structures of the nanocomposites were characterized with X-ray diffraction and transmission electron microscopy. Cone calorimeter tests and thermogravimetric analysis were used to evaluate the flame-retardant properties and thermal stability of the composites, respectively. In addition, tensile tests were carried out with a universal testing machine, and the morphology of the fracture surface was observed with environmental scanning electron microscopy. We found that SR/organophilic montmorillonite (Fe-OMT) was more effective in reducing the primary peak heat release rate of the nanocomposite, and the EVA/SR/Fe-OMT hybrid had a higher thermal stability in the deacetylated polymer than EVA/SR/sodium organophilic montmorillonite. Moreover, the exfoliated EVA/SR/Fe-OMT nanocomposite displayed excellent mechanical properties because of a better dispersion of Fe-OMT in the polymer matrix, and a possible mechanism is discussed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009