Get access

Thermomechanical characteristics of benzoxazine–urethane copolymers and their carbon fiber-reinforced composites

Authors

  • Sarawut Rimdusit,

    Corresponding author
    1. Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
    • Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
    Search for more papers by this author
  • Chalinee Liengvachiranon,

    1. Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
    Search for more papers by this author
  • Sunan Tiptipakorn,

    1. Department of Chemistry, Faculty of Liberal Arts and Science, Kasetsart University, Nakhornpathom 73140, Thailand
    Search for more papers by this author
  • Chanchira Jubsilp

    1. Department of Chemical Engineering, Faculty of Engineering, Srinakharinwirot University, Nakhonnayok, Ongkharak 26120, Thailand
    Search for more papers by this author

Abstract

Copolymers of polybenzoxazine (BA-a) and urethane elastomer (PU) with three different structures of isocyanates [i.e., toluene diisocyanate (TDI), diphenylmethane diisocyanate, and isophorone diisocyanate], were examined. The experimental results reveal that the enhancement in glass transition temperature (Tg) of BA-a/PU copolymers was clearly observed [i.e., Tg of the BA-a/PU copolymers in 60 : 40 BA-a : PU system for all isocyanate types (Tg beyond 230°C) was higher than those of the parent resins (165°C for BA-a and −70°C for PU)]. It was reported that the degradation temperature increased from 321°C to about 330°C with increasing urethane content. Furthermore, the flexural strength synergism was found at the BA-a : PU ratio of 90 : 10 for all types of isocyanates. The effect of urethane prepolymer based on TDI rendered the highest Tg, flexural modulus, and flexural strength of the copolymers among the three isocyanates used. The preferable isocyanate of the binary systems for making high processable carbon fiber composites was based on TDI. The flexural strength of the carbon fiber-reinforced BA-a : PU based on TDI at 80 wt % of the fiber in cross-ply orientation provided relatively high values of about 490 MPa. The flexural modulus slightly decreased from 51 GPa for polybenzoxazine to 48 GPa in the 60 : 40 BA-a : PU system. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009

Ancillary