Get access
Advertisement

Effects of membrane thickness and heat treatment on the gas transport properties of membranes based on P84 polyimide

Authors

  • Yi Shen,

    1. School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
    Search for more papers by this author
  • Aik Chong Lua

    Corresponding author
    1. School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
    • School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
    Search for more papers by this author

Abstract

P84 polyimide membranes with thicknesses ranging from 6 to 310 μm were successfully fabricated by spin coating. The glass transition temperature of the P84 powder was found to be 315°C using differential scanning calorimetry, whereas its decomposition temperature was 536°C using thermogravimetric analysis. Scanning electron microscopy was used to examine the morphology of the membranes. The permeability of single gas (He, N2, O2, and CO2) and the ideal selectivity of gas pair (O2/N2, He/CO2, CO2/N2, and He/O2), as a function of membrane thickness, were determined. The results showed that the permeability of a single gas increased with increasing membrane thickness, whereas the selectivity of a given gas pair was nearly independent of the membrane thickness. The average selectivity of O2/N2, He/CO2, CO2/N2, and He/O2 were found to be 8.2, 10.0, 12.9, and 15.8, respectively. The effects of heat treatment on the membrane morphology and gas transport properties were investigated for three annealing temperatures, i.e., 80°C, 200°C, and 315°C. The membrane annealed at 315°C was cracked due to the stress sustained either during heating or cooling, thereby resulting in little or no selectivity. The permeabilities of P84-118 membrane (118 μm thickness) annealed at 80°C were 16.2, 0.196, 1.20, and 2.01 Barrer for He, N2, O2, and CO2, respectively. The permeabilities of P84-118 membrane annealed at 200°C decreased by 9.75%, 47.96%, 25.83%, and 30.85% for He, N2, O2, and CO2, respectively, as compared with those at 80°C, whereas the ideal selectivities increased by 42.65%, 30.52%, 32.85%, and 21.63% for O2/N2, He/CO2, CO2/N2, and He/O2, respectively. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010

Get access to the full text of this article

Ancillary