Studies on the thermal stability and degradation kinetics of Pd/PC nanocomposites

Authors


Abstract

Effect of heating rate, Pd content, and synthesis method on the thermal stability of the ex situ and in situ Palladium/polycarbonate (Pd/PC) nanocomposites was investigated. TEM images revealed discrete Pd nanoclusters of about 5 and 15 nm sizes for 1 and 2 vol % ex situ nanocomposites, respectively. However, agglomerated Pd nanoclusters were noticed in the in situ samples, irrespective of the Pd content. The ex situ Pd/PC nanocomposites showed high onset temperature (Ti) for thermal degradation of PC than the in situ and pure PC samples. Pd content and heating rates were found to have a positive influence on the Ti and Tm (temperature at the maximum degradation rate occurs) of the Pd/PC nanocomposites. Thermal degradation of the PC was found to follow the first-order kinetics in the Pd/PC nanocomposites. The activation energies associated with the degradation were determined by using the Kissinger method. These activation energies are used to construct the Master decomposition curve (MDC) and weight–time–temperature (α–tT) plots that describe the time-temperature dependence of the PC pyrolysis in the Pd/PC nanocomposites. These constructed α–tT plots were validated with the data from isothermal measurements. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010

Ancillary