Morphological study of two-phase polymer blends during compounding in a novel compounder on the basis of elongational flows

Authors

  • Michel Bouquey,

    Corresponding author
    1. Laboratoire d'Ingénierie des Polymères pour les Hautes Technologies, Equipe d'Accueil Conventionnée 4379, Ecole Européenne de Chimie, Polymères et Matériaux, Université de Strasbourg, 25 Rue Becquerel, F67000 Strasbourg, France
    • Laboratoire d'Ingénierie des Polymères pour les Hautes Technologies, Equipe d'Accueil Conventionnée 4379, Ecole Européenne de Chimie, Polymères et Matériaux, Université de Strasbourg, 25 Rue Becquerel, F67000 Strasbourg, France
    Search for more papers by this author
  • Cyril Loux,

    1. Laboratoire d'Ingénierie des Polymères pour les Hautes Technologies, Equipe d'Accueil Conventionnée 4379, Ecole Européenne de Chimie, Polymères et Matériaux, Université de Strasbourg, 25 Rue Becquerel, F67000 Strasbourg, France
    Search for more papers by this author
  • René Muller,

    1. Laboratoire d'Ingénierie des Polymères pour les Hautes Technologies, Equipe d'Accueil Conventionnée 4379, Ecole Européenne de Chimie, Polymères et Matériaux, Université de Strasbourg, 25 Rue Becquerel, F67000 Strasbourg, France
    Search for more papers by this author
  • Gilles Bouchet

    1. Institut de Mécanique des Fluides et des Solides, Université de Strasbourg/Centre National de la Recherche Scientifique, 2 Rue Boussingault, F67000 Strasbourg, France
    Search for more papers by this author

Abstract

A new laboratory-scale mixing device based on an original concept was built and tested. This device has important technical features such as tightness to liquids and gases, the possibility of direct specimen molding after mixing, and easy handling of reactive systems. In comparison with existing laboratory mixers, the flow in this mixer is characterized by a high contribution from elongational flow. Morphological data on model polystyrene/poly(methyl methacrylate) blend systems have proved the high distributive and dispersive mixing efficiency in comparison with a classical rotational batch mixer. The influence of different experimental parameters such as the flow rate, mixing time, mixing element geometry, and viscosity ratio of blends is characterized and discussed. Much finer dispersions have been obtained with this new device versus those obtained with a conventional mixer with equivalent specific energy input. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011

Ancillary