• coatings;
  • crosslinking;
  • radiation


The coating of cotton fiber is used in the textile industry to increase the mechanical resistance of the yarn and their resistance to vibration, friction, impact, and elongation, which are some of the forces to which the yarn is subjected during the weaving process. The main objective of this study was to investigate the use of synthetic hydrophilic polymers, poly(vinyl alcohol) (PVA), and poly(N-vinyl-2-pyrrolidone) (PVP) to coat 100% cotton textile fiber, with the aim of giving the fiber temporary mechanical resistance. For the fixation of the polymer on the fiber, UV-C radiation was used as the crosslinking process. The influence of the crosslinking process was determined through tensile testing of the coated fibers. The results indicated that UV-C radiation increased the mechanical resistance of the yarn coated with PVP by up to 44% and the yarn coated with PVA by up to 67% compared with the pure cotton yarn, that is, without polymeric coating and crosslinking. This study is of great relevance, and it is important to consider that UV-C radiation dispenses with the use of chemical substances and prevents the generation of toxic waste at the end of the process. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011