Control release of some pesticides from starch/(ethylene glycol-co-methacrylic acid) copolymers prepared by γ-irradiation



Starch/(Ethylene glycol-co-Methacrylic acid) [Starch/(EG-co-MAA)] hydrogels were designed for controlled delivery of pesticides, such as Fluometuron (FH); Thiophanate Methyl (TF) and Trifluralin (TI) which are use in the agricultural field. The delivery device was prepared by using γ-irradiation and was characterized by FTIR, DSC, and SEM. The swelling behavior of hydrogels as a function of copolymer composition and irradiation dose was detected. This article discusses the swelling kinetics of polymer matrix and release dynamics of Trifluralin from hydrogels for the evaluation of the diffusion mechanism and diffusion coefficients. The values of the diffusion exponent ‘n’ for both the swelling of hydrogels and the release of Trifluralin from the hydrogels have been observed between 0.56 and 0.86 when the MAA content in the polymers was varied from 20 to 80 wt %, respectively. It is inferred from the values of the ‘n’ that non-Fickian diffusion mechanism has occurred for different EG/MAA compositions. The release rate from matrices prepared under different conditions was studied to determine which factors have the most affect and control over the hydrogel matrix release property. The preparation conditions such as EG/MAA hydrogel composition, pesticide concentration, type of pesticide and irradiation dose greatly affect the pesticide release rate, which also influenced by the pH and temperature of the matrix-surrounding medium. The pesticide release rate decreased as the irradiation dose and pH increased, but it increased as the MAA content, pesticide concentration and temperature increased. The release rate of Trifluralin is the highest one, whereas the Fluometuron is the lowest. The properties of the prepared hydrogels may make them acceptable for practical use as bioactive controlled release matrices. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011