Toughness of HDPE/CaCO3 microcomposites prepared from masterbatch by melt blend method

Authors

  • Ilias Ali,

    1. SABIC Polymer Research Center (SPRC), King Saud University, Riyadh 11421, Saudi Arabia
    2. Chemical Engineering Department, King Saud University, Riyadh 11421, Saudi Arabia
    Search for more papers by this author
  • Rabeh Elleithy

    Corresponding author
    1. SABIC Polymer Research Center (SPRC), King Saud University, Riyadh 11421, Saudi Arabia
    • SABIC Polymer Research Center (SPRC), King Saud University, Riyadh 11421, Saudi Arabia
    Search for more papers by this author

Abstract

In this study, a series of high-density polyethylene and micro/nanocalcium carbonate polymer composites (HDPE/CaCO3 nanocomposites) were prepared via melt blend technique using a twin screw extruder. Nanocomposite samples were prepared via injection molding for further testing. The effect of % loading of CaCO3 on mechanical and fracture toughness of these composites has been investigated in details. The effect of precrack length variation on the fracture toughness of the composite samples was evaluated, and the morphology of the fractured samples was also observed using scanning electron microscopy (SEM). It was found that increasing the % of CaCO3 and precrack length decreased the fracture toughness. Fracture surface examination by SEM indicated that the diminished fracture properties in the composites were caused by the aglomerization of CaCO3 particles which acted as stress concentrators. A finite element analysis using ANSYS was also carried out to understand the effect of agglomeration size, interaction between the particles and crack tip length on the fracture properties of these composites. Finally, a schematic presentation of the envisioned fracture processes was proposed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011

Ancillary