• radiosensitizer;
  • crosslinking;
  • electron beam


Trimethylolpropane trimethylacrylate/Ultra high molecular weight polyethylene (TMPTMA/UHMWPE) composite and pure UHMWPE plates were made by compression molding and electron beam (EB) irradiation crosslinking methods. Fourier transform infrared spectroscopy (FTIR), Soxhlet extractor, electromechanical tester, and wear tester were used for the characterization of the structure, mechanical properties, and tribological performance of the crosslinked UHMWPE. FTIR analyses show that trans-vinylene (965 cm−1) absorption increases with the increasing dose and the trans-vinylene intensity of TMPTMA/UHMWPE is higher than that of UHMWPE at the same dose, and Soxhlet experiments reveal that gel fraction increases with the increasing dose, both proving that crosslinking took place in all the irradiated samples. The results of the tensile tests indicate a significant decrease in elongation at break, but the stress of UHMWPE increases to 47 MPa at 10 kGy and then decreases with the increasing dose. The stress of TMPTMA/UHMWPE composites keeps at about 39 MPa before 50 kGy and then decreases with the increasing dose because of plasticization effect. The stress changes indicate that crosslinking and degradation occurred at the same time. Wear rate of 100 kGy 1% TMPTMA/UHMWPE is 1.76 × 10−7mg/Nm, only 23.5% of wear rate of 0 kGy UHMWPE and 44.2% of wear rate of 100 kGy UHMWPE. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013