Preparation of iminodiacetic acid-type composite chelating material IDAA-PGMA/SiO2 and preliminary studies on adsorption behavior of heavy metal ions and rare earth ions

Authors


Abstract

A kind of iminodiacetic acid (IDAA)-type composite chelating materials was prepared by first graft polymerization and subsequent polymer reaction. Monomer glycidyl methacrylate (GMA) was grafted on micron-sized silica gel particles in the manner of “graft through” in a solution polymerization system, resulting in the grafted particles poly(glycidyl methacrylate) (PGMA)/silicon dioxide (SiO2). Subsequently, the ring-opening reaction of the epoxy groups of the grafted PGMA was carried out with IDAA as reaction reagent, resulting in the bonding of IDAA groups onto PGMA/SiO2 and obtaining the composite chelating material IDAA-PGMA/SiO2 particles. The effects of the main factors on the graft polymerization of GMA and the bonding reaction of IDAA were examined emphatically, and the adsorption behavior of IDAA-PGMA/SiO2 particles toward several kinds of heavy metal ions and rare earth ions was preliminarily explored. The experiments results show that: (a) to obtain the grafted particles PGMA/SiO2 with high grafting degree, in the graft polymerization step, the reaction temperature and the used amount of initiator should be controlled. The suitable temperature is 70°C and the appropriate used amount of initiator is 1.4 % of the monomer mass. Under the optimal conditions, the grafted degree of PGMA can reach 17.50 g/100 g. (b) It is feasible to introducing of IDAA groups onto PGMA/SiO2 particles via ring-opening reaction of epoxy groups of the grafted PGMA under alkaline conditions, and the bonding rate of IDAA group can get up to 70% based on epoxy groups of the grafted PGMA. (c)The composite chelating material IDAA-PGMA/SiO2 possesses very strong chelating adsorption ability for heavy metal ions, and especially toward Pb2+ ion, the adsorption capacity can reach 24 g/100 g. (d) The adsorption ability of IDAA-PGMA/SiO2 for rare earth ions is weaker than that for heavy metal ions. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Ancillary