Study of uranium adsorption using amidoximated polyacrylonitrile-encapsulated macroporous beads



Polyacrylonitrile beads, containing the amidoximated polyacrylonitrile, were prepared for adsorption of uranium. The synthesized amidoximated polyacrylonitrile chelating beads were evaluated, for their ability to adsorb uranium from aqueous solution, at different temperatures and pH values. The kinetic measurement showed that about 120 min of equilibration time was enough, to remove saturation amount of uranium from the solution. The pseudo first-order and pseudo second-order equations were used to analyze the kinetic data, and the rate constants were determined. The equilibrium adsorption data were examined by the Langmuir, Freundlich, and Temkin isotherms. The data showed a better fit to the Langmuir isotherm. The loaded uranium could also be leached out from the beads, by treating with dilute acids. The uranium uptake capacity of the polymeric beads was found to be 3.5 mg/g of the swollen beads. Reusability of the beads was also established by multiple adsorption–desorption experiments. The pore volume and the surface area of the dried beads, measured by BET method, were found to be 1.93 cc/g and 320 m2/g, respectively. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013