Effects of waste ground fluororubber vulcanizate powders on the properties of silicone rubber/fluororubber blends



We prepared fluororubber (FKM) vulcanizate powder (FVP) via cryogenic grinding of the FKM commonly used in automobiles and assessed the particle size distribution of the resulting powder. We also prepared silicone rubber (SR)/FKM blends at a ratio of 25/75. Varying amounts of FKM were replaced with equal amounts of FVP within the range of 5–40 wt%, and the physical properties of the resulting SR/FKM/FVP blends were investigated and compared. The TGA curves of the SR/FKM/FVP blends obtained during the thermal property investigations indicated that pyrolysis of SR occurred within two temperature ranges, and that the SR/FKM/FVP blends with 5 wt% FVP demonstrated the highest thermal stability. The storage modulus (E') and loss modulus (E″) of the SR/ FKM/FVP blends increased as the FVP content increased. In the SR/FKM/FVP blends with 5 and 10 wt% FVP, very typical elastic-deformation behavior was observed. On the contrary, in 40 wt% FVP, the rubber properties disappeared. The mean particle size of FVP was 41.75 μm, and particle size distribution measurements of the SR/FKM/FVP blends suggest particle coexistence such that FVP was condensed and separated. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013