• melt spinning;
  • polylactic acid;
  • cellulose nanowhiskers;
  • mechanical properties;
  • thermal properties;
  • shrinkage


Bio-based continuous fibers were processed from polylactic acid (PLA) and cellulose nanowhiskers (CNWs) by melt spinning. Melt compounding of master batches of PLA with 10 wt % CNWs and pure PLA was carried out using a twin-screw extruder in which compounded pellets containing 1 and 3 wt % of CNWs were generated for subsequent melt spinning. The microscopy studies showed that the fiber diameters were in the range of 90-95 µm, and an increased surface roughness and aggregations in the fibers containing CNWs could be detected. The addition of the CNWs restricted the drawability of the fibers to a factor of 2 and did not affect the fiber stiffness or strength, but resulted in a significantly lower strain and slightly increased crystallinity. Furthermore, CNWs increased the thermal stability, creep resistance and reduction in thermal shrinkage of PLA fibers, possibly indicating a restriction of the polymer chain mobility due to the nanoscale additives. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013