• electrospinning;
  • organic–inorganic hybrid scaffolds;
  • gelatin;
  • bioactive glass;
  • sol–gel processing;
  • bone regeneration


Organic–inorganic hybrid materials, composed of phases that interact on a nanoscale and a microstructure that mimics the extracellular matrix, can potentially provide attractive scaffolds for bone regeneration. In the present study, hybrid scaffolds of gelatin and bioactive glass (BG) with a fibrous microstructure were prepared by a combined sol–gel and electrospinning technique and evaluated in vitro. Structural and chemical analyses showed that the fibers consisted of gelatin and BG that were covalently linked by 3-glycidoxypropyltrimethoxysilane to form a homogeneous phase. Immersion of the gelatin–BG hybrid scaffolds in a simulated body fluid (SBF) at 37°C resulted in the formation of a hydroxyapatite (HA)-like material on the surface of the fibers within 12 h, showing the bioactivity of the scaffolds. After 5 days in SBF, the surface of the hybrid scaffolds was completely covered with an HA-like layer. The gelatin–BG hybrid scaffolds had a tensile strength of 4.3 ± 1.2 MPa and an elongation to failure of 168 ± 14%, compared to values of 0.5 ± 0.2 MPa and 63 ± 2% for gelatin scaffolds with a similar microstructure. The hybrid scaffolds supported the proliferation of osteoblastic MC3T3-E1 cells, alkaline phosphatase activity, and mineralization during in vitro culture, showing their biocompatibility. The results indicate that these gelatin–BG hybrid scaffolds prepared by a combination of sol–gel processing and electrospinning have potential for application in bone regeneration. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013