Synthesis and aqueous solution properties of novel thermosensitive polyacrylamide derivatives

Authors

  • Yong Zhu,

    1. College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
    Search for more papers by this author
  • Yuntao Xu,

    1. College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
    Search for more papers by this author
  • Guangsu Huang

    Corresponding author
    1. College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
    • College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China. E-mail: guangsu-huang@hotmail.com

    Search for more papers by this author

Abstract

A series of novel thermosensitive polymers were synthesized with acrylamide and thermosensitive macromonomers by radical polymerization in water solution. The structures of the copolymers were characterized by 1H-NMR. The effects of the polymer concentration, NaCl concentration, shear rate, and chemical structure on the thermothickening behavior of the polymer solution were investigated by advanced rheometry. The luminous transmittance of the solution with various polymer concentrations was tested by visible spectrometry. The results show that the thermothickening behavior was due to the phase separation of the polymer solution or intramolecular repulsions between the hydrophobic side chains and hydrophilic backbone at high temperatures. Finally, the thermothickening properties of the novel copolymer were studied under conditions simulating an underground oil reservoir. This novel copolymer is expected to be used as an oil-displacing agent to enhance oil recovery in the future. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 766-775, 2013

Ancillary