Preparation and characterization of a poly(vinyl alcohol)/tetraethoxysilane ultrafiltration membrane by a sol–gel method

Authors

  • Haikuan Yuan,

    Corresponding author
    1. Zhejiang Province Key Laboratory of Biomass Fuel, Zhejiang University of Technology, Hangzhou, China
    • College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou, China
    Search for more papers by this author
  • Jie Ren,

    1. College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou, China
    2. Zhejiang Province Key Laboratory of Biomass Fuel, Zhejiang University of Technology, Hangzhou, China
    Search for more papers by this author
  • Liang Cheng,

    1. Chemical Engineering Research Center, East China University of Science and Technology, Shanghai, China
    Search for more papers by this author
  • Lian Shen

    1. College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou, China
    2. Zhejiang Province Key Laboratory of Biomass Fuel, Zhejiang University of Technology, Hangzhou, China
    Search for more papers by this author

Correspondence to: H. Yuan (E-mail: yhk12345@163.com)

ABSTRACT

Using poly(vinyl alcohol) (PVA) with highly hydrophilic properties as membrane material and poly(ethylene glycol) (PEG) as an additive, we prepared PVA/tetraethoxysilane (TEOS) ultrafiltration (UF) membranes with good antifouling properties by a sol–gel method. The PVA/TEOS UF membranes were characterized by X-ray diffraction patterns, Fourier transform infrared spectroscopy, scanning electron microscopy, and static contact angle of measurement of water. The hybridization of TEOS to PVA for preparing the PVA/TEOS UF membranes achieved the required permeation performance and good antifouling behaviors. The morphology and permeation performance of the PVA/TEOS membranes varied with the different TEOS loadings and PEG contents. The pure water fluxes (JW) increased and the rejections (Rs) decreased with increasing TEOS loading and PEG content. The PVA/TEOS UF membrane with a PVA/TEOS/PEG/H2O composition mass ratio of 10/3/4/83 in the dope solution had a JW of 66.5 L m−2 h−1 and an R of 60.3% when we filtered it with 300 ppm of bovine serum albumin aqueous solution at an operational pressure difference of 0.1 MPa. In addition, the filtration and backwashing experiment proved that the PVA/TEOS membranes possessed good long-term antifouling abilities. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4066–4074, 2013

Ancillary