Get access

Effect of molecular architecture on the crystalline structure and stiffness of iPP homopolymers: Modeling based on annealing experiments

Authors

  • Zsuzsanna Horváth,

    1. Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest, Hungary
    2. Institute of Materials Science and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
    Search for more papers by this author
  • Alfréd Menyhárd,

    Corresponding author
    1. Institute of Materials Science and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
    • Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest, Hungary
    Search for more papers by this author
  • Petar Doshev,

    1. Borealis Polyolefine GmbH, Linz, Austria
    Search for more papers by this author
  • Markus Gahleitner,

    1. Borealis Polyolefine GmbH, Linz, Austria
    Search for more papers by this author
  • Cornelia Tranninger,

    1. Borealis Polyolefine GmbH, Linz, Austria
    Search for more papers by this author
  • Saeid Kheirandish,

    1. Borealis Polyolefine GmbH, Linz, Austria
    Search for more papers by this author
  • József Varga,

    1. Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest, Hungary
    2. Institute of Materials Science and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
    Search for more papers by this author
  • Béla Pukánszky

    1. Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest, Hungary
    2. Institute of Materials Science and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
    Search for more papers by this author

Correspondence to: A. Menyhárd (E - mail: amenyhard@mail.bme.hu)

ABSTRACT

Five polypropylene (PP) homopolymers were selected and their molecular structure was thoroughly characterized to determine the effect of molecular architecture on their annealing behavior and on the ultimate stiffness achieved by heat treatment. Molecular mass and its distribution were characterized by rheological measurements, while chain regularity was determined by differential scanning calorimetry (DSC) using stepwise isothermal segregation technique (SIST). The samples were annealed in two different ways. Tensile bars were treated in an oven at 165 °C for increasing times to determine changes in stiffness. Various defects (microcracks and voids) developed during the annealing of tensile specimens that did not allow the reliable determination of modulus by direct measurement. On the other hand, the second approach, the annealing of small samples in a DSC cell clearly showed the changes occurring in crystalline structure and also the effect of nucleation and molecular architecture on them. The large molecular weight fraction used to facilitate nucleation hinders crystal perfection, whereas the presence of a heterogeneous nucleating agent increases overall crystallinity, but does not influence recrystallization during annealing. Melting traces were transformed into lamella thickness distributions from which average lamella thickness was derived. Lamella thickness and crystallinity, the independent variables of the model equation used for the calculation of modulus, were extrapolated to infinite annealing time to predict maximum stiffness. The value obtained, 3.5 GPa, is very far from the theoretically predicted 40 GPa of oriented crystals, which cannot be achieved under practical conditions. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3365–3373, 2013

Get access to the full text of this article

Ancillary