Advertisement

Temperature- and pH-sensitive IPNs grafted onto polyurethane by gamma radiation for antimicrobial drug-eluting insertable devices

Authors

  • Franklin Muñoz-Muñoz,

    Corresponding author
    1. Departamento de Fisicoquímica de Nanomateriales, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Tijuana-Ensenada, Mexico
    Search for more papers by this author
  • Emilio Bucio,

    1. Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico, DF, Mexico
    Search for more papers by this author
  • Beatriz Magariños,

    1. Departamento de Microbiología y Parasitología, Facultad de Biología CIBUS, Universidad de Santiago de Compostela, 15782-Santiago de Compostela, Spain
    Search for more papers by this author
  • Angel Concheiro,

    1. Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782-Santiago de Compostela, Spain
    Search for more papers by this author
  • Carmen Alvarez-Lorenzo

    1. Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782-Santiago de Compostela, Spain
    Search for more papers by this author

  • The work described in this article is the subject of patent application P201231908 filed by the University of Santiago de Compostela and the Universidad Nacional Autónoma de México.

ABSTRACT

Temperature- and pH-sensitive interpenetrating polymer networks (IPNs) and semi-interpenetrating polymer networks (s-IPNs) were γ-ray grafted onto polyurethane (Tecoflex®; TFX) to obtain vancomycin-eluting implantable medical devices with minimized risk of infections. N-isopropylacrylamide (NIPAAm) was grafted onto TFX catheters and films via a preirradiation oxidative method (method P) or via a direct method (method D). The PNIPAAm network facilitated acrylic acid (AAc) inclusion and subsequent polymerization/crosslinking, under specific reaction conditions. IPNs and s-IPNs systems were characterized regarding the amount of grafted polymers, surface properties (FTIR-ATR, ESEM, EDX), thermal behavior (DSC), and their temperature- and pH-responsiveness. Loading and release of vancomycin for preventing in vitro growth of Staphylococcus aureus were also evaluated. Antimicrobial activity tests and hemo- (hemolysis, protein adsorption, thrombogenicity) and cyto-compatibility (cell viability and production of cytokines and NO) assays indicated that the modification of TFX by γ-radiation may improve the performance of polyurethanes for biomedical applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014, 131, 39992.

Ancillary