• batteries and fuel cells;
  • copolymers;
  • membranes;
  • swelling


This article presented the synthetic and preparation route of quaternary ammonium functionalized anion exchange membranes (AEMs), which were derived from an engineering plastics polymer, poly(arylene ether sulfone) with 3,3′,5,5′-tetramethyl-4,4′-dihydroxybipheny moiety (PAES-TM). The benzylmethyl groups on the main-chain of PAES-TM were converted to the bromomethyl groups via a radical reaction, thereby avoiding complicated chloromethylation, which required carcinogenic reagents. The chemical structure of the bromomethylated PAES was characterized by 1H NMR spectrum. Following a homogeneous quaternization with trimethylamine in the solution, a series of flexible and tough membranes were obtained by a solution casting and anion exchange process. The ion exchange capacity values were ranging from 1.03 to 1.37 meq g−1. The properties of the membranes, including water uptake, hydroxide conductivity, and methanol permeability were evaluated in detail. The AEM showed a high conductivity above 10−2 S cm−1 at room temperature and extremely low methanol permeability of 4.16–4.94 × 10−8 cm2 s−1. The high hydroxide conductivity of TMPAES-140-NOH could be attributed to the nano-scale phase-separated morphology in the membrane, which was confirmed by their transmission electron microscopy images. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40256.