Deposition of nonfouling plasma polymers to a thermoplastic silicone elastomer for microfluidic and biomedical applications

Authors


ABSTRACT

Plasma polymerization is used for the modification and control of surface properties of a highly transparent, thermoplastic elastomeric silicone copolymer, GENIOMER® 80 (G80). PEG-like diglyme plasma polymer films were deposited with ether retentions varying between 20% and 70% as measured by X-ray photoelectron spectroscopy analysis which did not affect the transparency of the substrate. Films with ether retentions of greater than 70% inhibit protein binding (bovine serum albumin and fibrinogen) and cell proliferation. A short oxygen plasma pretreatment enhances the adhesion and stability of the film as shown by protein binding and cell adhesion experiments. The transparency of the material and the stability of the coating makes this material a versatile bulk material for technical (e.g., lab-on-a-chip) and biomedical (e.g., intraocular lens) applications. The G80/plasma polymer composite is stable against vigorous washing and storage over 5 months and, therefore, offers an attractive alternative to poly(dimethylsiloxane). © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40500.

Ancillary