SEARCH

SEARCH BY CITATION

Keywords:

  • riverine connectivity;
  • dams;
  • water withdrawals;
  • tropical streams;
  • migratory biota;
  • shrimps;
  • Puerto Rico

Abstract

  • 1.
    One way in which dams affect ecosystem function is by altering the distribution and abundance of aquatic species.
  • 2.
    Previous studies indicate that migratory shrimps have significant effects on ecosystem processes in Puerto Rican streams, but are vulnerable to impediments to upstream or downstream passage, such as dams and associated water intakes where stream water is withdrawn for human water supplies. Ecological effects of dams and water withdrawals from streams depend on spatial context and temporal variability of flow in relation to the amount of water withdrawn.
  • 3.
    This paper presents a conceptual model for estimating the probability that an individual shrimp is able to migrate from a stream's headwaters to the estuary as a larva, and then return to the headwaters as a juvenile, given a set of dams and water withdrawals in the stream network. The model is applied to flow and withdrawal data for a set of dams and water withdrawals in the Caribbean National Forest (CNF) in Puerto Rico.
  • 4.
    The index of longitudinal riverine connectivity (ILRC), is used to classify 17 water intakes in streams draining the CNF as having low, moderate, or high connectivity in terms of shrimp migration in both directions. An in-depth comparison of two streams showed that the stream characterized by higher water withdrawal had low connectivity, even during wet periods. Severity of effects is illustrated by a drought year, where the most downstream intake caused 100% larval shrimp mortality 78% of the year.
  • 5.
    The ranking system provided by the index can be used as a tool for conservation ecologists and water resource managers to evaluate the relative vulnerability of migratory biota in streams, across different scales (reach-network), to seasonally low flows and extended drought. This information can be used to help evaluate the environmental tradeoffs of future water withdrawals.

Copyright © 2009 John Wiley & Sons, Ltd.