• external anal sphincter;
  • external urethral sphincter;
  • Onuf's nucleus;
  • fluorescent tracers;
  • axon branching


The aim of our study was to provide quantitative data on pudendal motor neuron cell bodies and axons in the female rat. To confirm earlier studies, fluorescent retrograde tracers were used to label the motor neurons for correlation with myelinated axon counts along the length of the motor pudendal nerve. The external urethral sphincter of female rats was injected with diamidino yellow and the external anal sphincter with fast blue. The L6 spinal cord revealed labeled motor neurons. Those in the dorsolateral column (60.8 ± 10.6) had nuclei labeled yellow from the external urethral sphincter and those in the dorsomedial column (31.7 ± 8.5) had cytoplasm labeled blue from the external anal sphincter. Double labeling was not present, suggesting that pudendal motor neurons in each column innervate separate sphincters. The motor pudendal nerve in the ischiorectal fossa was also characterized by light microscopy. The mean myelinated axon count (151.4 ± 17.0) was highly correlated (r = 0.995) in the proximal fascicles and the sum of distal fascicles. This indicated that myelinated axons do not branch at the point where the main motor pudendal nerve branches into separate fascicles. Axon counts between sides were not as well correlated (r = 0.883). The ratio of motor neurons to myelinated axons is 56%, suggesting that some myelinated axons either innervate other muscles or are sensory. This reproducible characterization of the normal pudendal nerve anatomy provides an excellent basis for experimental studies associated with pudendal nerve denervation as a model for neurogenic incontinence. Anat Rec 266:21–29, 2002. © 2002 Wiley-Liss, Inc.