SEARCH

SEARCH BY CITATION

Abstract

The source of the new nuclei appearing during the growth of muscle fibers was examined in the tibialis anterior muscle of young Sherman rats (14–17 days of age) using radioautography at various intervals after a single injection of a small, non-toxic dose of 3H-thymidine (2 μCi/g body weight). Two techniques were employed: (1) labeled nuclei were detected in 1 μ thick radioautographs examined in the light microscope, and identified by simultaneous electron microscope examination of an adjacent section. The nuclei were then classified either as “true” muscle nuclei (within the plasmalemma of the fibers) or as belonging to “satellite cells” (which are mononucleated cells with scanty cytoplasm wedged between plasmalemma and basement membrane). (2) Muscle fibers freed by collagenase digestion were radioautographed one hour after 3H-thymidine injection in order to determine the total number of labeled nuclei (true muscle nuclei plus those of satellite cells) per unit length of fiber.

Certain nuclei within the basement membrane of muscle fibers are labeled one hour after 3H-thymidine and, therefore, synthesize DNA. The electron microscope demonstrates that these nuclei invariably belong to satellite cells, never to true muscle nuclei. Furthermore, the total number of labeled nuclei per unit length of fiber doubles between 1 and 24 hours; and, therefore, the labeled satellite cell nuclei undergo mitosis.

Following mitosis, half of the daughters of satellite cells are incorporated into the fibers to become true muscle nuclei. The remaining half divides again later; and half of their daughter cells are incorporated. Thus, satellite cells in young rats divide repeatedly and function as a source of true muscle nuclei.