• cardiac development;
  • conduction system;
  • epithelial mesenchymal transformation;
  • secondary heart field;
  • sinoatrial node


Recent advances in the study of cardiac development have shown the relevance of addition of myocardium to the primary myocardial heart tube. In wild-type mouse embryos (E9.5–15.5), we have studied the myocardium at the venous pole of the heart using immunohistochemistry and 3D reconstructions of expression patterns of MLC-2a, Nkx2.5, and podoplanin, a novel coelomic and myocardial marker. Podoplanin-positive coelomic epithelium was continuous with adjacent podoplanin- and MLC-2a-positive myocardium that formed a conspicuous band along the left cardinal vein extending through the base of the atrial septum to the posterior myocardium of the atrioventricular canal, the atrioventricular nodal region, and the His-Purkinje system. Later on, podoplanin expression was also found in the myocardium surrounding the pulmonary vein. On the right side, podoplanin-positive cells were seen along the right cardinal vein, which during development persisted in the sinoatrial node and part of the venous valves. In the MLC-2a- and podoplanin-positive myocardium, Nkx2.5 expression was absent in the sinoatrial node and the wall of the cardinal veins. There was a mosaic positivity in the wall of the common pulmonary vein and the atrioventricular conduction system as opposed to the overall Nkx2.5 expression seen in the chamber myocardium. We conclude that we have found podoplanin as a marker that links a novel Nkx2.5-negative sinus venosus myocardial area, which we refer to as the posterior heart field, with the cardiac conduction system. Anat Rec, 290:115–122, 2007. © 2006 Wiley-Liss, Inc.