Postnatal development of noradrenergic terminals in the rat trigeminal motor nucleus: A light and electron microscopic immunocytochemical analysis



The noradrenergic (NA) innervation in the trigeminal motor nucleus (Vmot) of postnatal and adult rats was examined by light and electron microscopic immunocytochemistry using antibodies against dopamine-β-hydroxylase or tyrosine hydroxylase. NA fibers were identified in the Vmot as early as the day of birth (postnatal day 0; P0). A continuous increase in the density of labeled fibers was observed during development up to P20, with a slight decrease at P30 and in the adult. Electron microscopic analysis of serial ultrathin sections revealed that, at P5, nearly half (46%) of the examined NA terminals made synaptic contact with other neuronal elements with membrane specializations. The percentage of examined NA varicosities engaged in synaptic contacts increased at P15 (74%), then decreased in the adult (64%). At all developmental ages, the majority of contacts made by these boutons were symmetrical, the postsynaptic elements being mainly dendrites and occasionally somata. Interestingly, some of the NA terminals made axo-axon contacts with other unidentified boutons. These results show that, although the density of NA fibers increases during postnatal development, functional NA boutons are present in the Vmot at early postnatal ages. Some of these fibers might exert their effects via nonsynaptic release of noradrenaline, the so-called volume transmission, but, in the main, they form conventional synaptic contacts with dendrites, somata, and other axonal terminals in the Vmot. These results are consistent with previous electrophysiological studies that propose an important role for the NA system in modulating mastication. Anat Rec, 290:96–107, 2007. © 2006 Wiley-Liss, Inc.