Embryology of Extra- and Intrahepatic Bile Ducts, the Ductal plate



In the human embryo, the first anlage of the bile ducts and the liver is the hepatic diverticulum or liver bud. For up to 8 weeks of gestation, the extrahepatic biliary tree develops through lengthening of the caudal part of the hepatic diverticulum. This structure is patent from the beginning and remains patent and in continuity with the developing liver at all stages. The hepatic duct (ductus hepaticus) develops from the cranial part (pars hepatica) of the hepatic diverticulum. The distal portions of the right and left hepatic ducts develop from the extrahepatic ducts and are clearly defined tubular structures by 12 weeks of gestation. The proximal portions of the main hilar ducts derive from the first intrahepatic ductal plates. The extrahepatic bile ducts and the developing intrahepatic biliary tree maintain luminal continuity from the very start of organogenesis throughout further development, contradicting a previous study in the mouse suggesting that the extrahepatic bile duct system develops independently from the intrahepatic biliary tree and that the systems are initially discontinuous but join up later. The normal development of intrahepatic bile ducts requires finely timed and precisely tuned epithelial–mesenchymal interactions, which proceed from the hilum of the liver toward its periphery along the branches of the developing portal vein. Lack of remodeling of the ductal plate results in the persistence of an excess of embryonic bile duct structures remaining in their primitive ductal plate configuration. This abnormality has been termed the ductal plate malformation. Anat Rec, 291:628–635, 2008. © 2008 Wiley-Liss, Inc.