SEARCH

SEARCH BY CITATION

Keywords:

  • maxillary sinus volume;
  • pneumatization;
  • platyrrhine primates;
  • craniofacial morphology

Abstract

  1. Top of page
  2. Abstract
  3. MATERIALS AND METHODS
  4. RESULTS
  5. DISCUSSION
  6. Acknowledgements
  7. LITERATURE CITED

Several different factors have been hypothesized as explanations of variation in primate paranasal sinus size. Biomechanical forces, particularly those associated with mastication, are frequently evoked to account for differences in primate craniofacial pneumatization. To test whether masticatory stresses are responsible for maxillary sinus volume diversity, two platyrrhine species of the genus Cebus (C. apella and C. albifrons) were examined. The former has been identified as a hard object feeder, and many morphological differences between the two species are attributable to differences in the mechanical properties of their respective diets. Sinus volumes were derived from serial coronal CT scans of the crania of adults. Several external cranial measurements were used to scale sinus volume relative to the size of the face. Relative measures of maxillary sinus volume were compared using standard statistical techniques. In all comparisons, the two capuchin species do not differ from one another significantly at P < 0.05. Thus, this “natural experiment” fails to support the interpretation that biomechanical forces acting on the facial skeleton substantially affect the degree of paranasal pneumatization in primates. This result suggests that it is unlikely that the maxillary sinus performs any function in relation to masticatory stress; other factors must be responsible for the variation in sinus volume among primates. Anat Rec, 291:1414–1419, 2008. © 2008 Wiley-Liss, Inc.

Pneumatization, in the form of paranasal sinuses, is a feature of the cranium in most eutherian mammals (Novacek, 1993). The sinuses are bony cul-de-sacs connected to the nasal cavity (Fig. 1); there are four such sinuses found in the facial skeleton of primates (Cave and Haines, 1940). The names of the maxillary, sphenoidal, ethmoidal, and frontal sinuses are taken from the (principal) bones they occupy. These hollow spaces develop as outgrowths of the mucosa that line the nasal capsule during ontogeny, and traditional anatomical definitions (e.g., Negus, 1958) of the sinuses are derived from the distinctive placement of their openings, or ostia, into the nasal cavity, although other classificatory systems have been proposed (e.g., Rossie, 2006).

thumbnail image

Figure 1. Human skull, sectioned in the sagittal and coronal planes, as drawn by Leonardo da Vinci (after Clark, 1968). The maxillary sinus is highlighted in pink.

Download figure to PowerPoint

The presence of sinuses has intrigued scholars for millennia, including such luminaries as Hippocrates (Stierna and Westrin, 1999), Vesalius (Blanton and Biggs, 1969), and da Vinci (Clark, 1968). It is perhaps surprising, then, that a concerted effort to unravel the mysteries of sinus growth, distribution, and possible function did not emerge until the advent of modern imaging techniques (Rae and Koppe, 2002), although a handful of previous studies developed significant insights into paranasal pneumatization in primates (Paulli, 1900; Cave and Haines, 1940; Ward and Pilbeam, 1983; Lund, 1988). Since computed tomography (CT and microCT) imaging have become commonplace, however, there has been a sharp increase in our knowledge of both the growth and development (Koppe and Nagai, 1997; Koppe et al., 1995, 1999; Rossie, 2006) and size and distribution (Koppe and Ohkawa, 1999; Rae and Koppe, 2000; Rae et al., 2003; Rossie, 2003; Nishimura et al., 2005) of sinuses in both extant and extinct (Rae, 1999; Spoor and Zonneveld, 1999; Rossie et al., 2002; Rossie, 2005; Nishimura et al., 2007; Rae et al., 2007) primates.

One of the most contentious issues in the study of craniofacial pneumatization is the possible function of the paranasal sinuses; on this topic, there is little consensus (Rae and Koppe, 2004). At present, there are nearly as many hypotheses as to the biological role of the sinuses as there are investigators. Table 1 lists a few of the mooted functional explanations for the presence of sinuses. Although few of these “functions” have been tested critically, obvious counter-examples exist for the majority of the proposed explanations of sinus function (Blanton and Biggs, 1969). The two most favored explanations for sinus presence and/or variation are that they contribute in some way to the conditioning of inspired air, or that they are the result of biomechanical forces acting upon the cranium.

Table 1. Probable functions of paranasal sinuses
  1. Modified after Blanton and Biggs (1969) and Witmer (1997).

1. Olfactory function (in certain mammals)
2. Respiratory function (heating/humidifying air)
3. Thermoregulatory function
4. Resonance to the voice
5. Floatation devices
6. Role in facial ontogeny
7. Balancing head on neck
8. Trauma protection
9. Buttressing of the skull
10. Providing maximal strength with minimal material
11. Reduction of skull weight
12. Increasing facial dimensions for the origin of cranial muscles
13. Evolutionary remnants (vestigial)

The idea that paranasal sinuses contribute to the warming and humidification of air before it reaches the lungs (e.g., Coon, 1962) has been dealt severe blows by comparative work on humans and monkeys. Humans living in cold environments tend to have smaller maxillary sinuses the further north they live (Shea, 1977), and the same is true for Japanese macaques (Rae et al., 2003). Also, physiological work has shown that the transfer of air from the sinuses to the nasal cavity happens at a rate that is too low to contribute substantially to conditioning air (Proetz, 1941).

The other most frequently cited explanations for paranasal sinuses is that their presence and/or size is related (in some way) to biomechanical stresses and strains, usually associated with masticatory behavior (Weidenreich, 1924; Hofer, 1965; Prossinger et al., 2000). Although rarely stated explicitly, the implication is that the size and/or presence of the sinuses are linked to forces present in the cranium during chewing; the size and direction of these forces is directly related to the degree of paranasal pneumatization (e.g., Preuschoft et al., 2002).

Broad comparisons of sinus presence and/or size and masticatory stress between taxa are contradictory. For example, some pitheciines lack a maxillary sinus (Nishimura et al., 2005; Rossie, 2006), which might suggest that high masticatory stresses associated with hard-object feeding (Martin et al., 2003) may be associated with a reduction or loss of paranasal pneumatization. Pongo, on the other hand, has a maxillary sinus that is indistinguishable in size from other hominoids (Rae and Koppe, 2000), despite a higher reliance on mastication of hard objects (Ungar, 1994).

A number of recent studies using finite element analysis have shed new light on the distribution of masticatory stress throughout the craniofacial skeleton (e.g., Witzel and Preuschoft 1999, 2002; Ross et al. 2005). While these studies principally support the existence of the well-known bony pillars of the facial skeleton, they clearly identify areas in the facial skeleton, such as the maxillary sinuses, that are free from stress (Witzel and Preuschoft, 2002). Indeed, modeling studies have shown that there is little biomechanical difference between primate facial skeletons with sinuses and those without (Smith et al., 2007). The conclusion from these studies is that the thin-walled shells of the maxillary sinuses are the necessary part of the facial skeleton. The corollary to this inference is that changes to these biomechanically important pillars, which impart resistance to high masticatory loads, are responsible for any observable differences in pneumatization (Preuschoft et al., 2002). Thus, mechanical forces do not act directly on the maxillary sinus, but the sinus may be affected by changes in the bony pillars that surround them. Indeed, the individual bony trabeculae observed in human upper jaws are orientated in such a way as to shift the strain caused by mechanical loads away from the maxillary sinus (Wetzel, 1925; Wetzel and Schröder, 1925). This system of trabelular orientation seems to work with a high degree of safety, as crash-tests of the human maxillary sinus floor suggest (Wetzel and Schröder, 1925).

To test the hypothesis that masticatory stress has an effect on the paranasal sinuses, we adopt the narrow allometry approach (Conroy, 1987) of comparing closely related species, to eliminate the confounding factor of phylogeny. Here, two species of the genus Cebus (C. albifrons and C. apella) are compared; the former is a primary frugivore (Masterson, 1997), and the latter is classified as a hard-object feeder (Dumont, 1995; Scott et al., 2005), and the form of their crania and mandibles reflect this difference in diet (Cole, 1992; Daegling, 1992).

MATERIALS AND METHODS

  1. Top of page
  2. Abstract
  3. MATERIALS AND METHODS
  4. RESULTS
  5. DISCUSSION
  6. Acknowledgements
  7. LITERATURE CITED

A mixed sex sample (Table 2) of adult dry crania comprising 16 individuals (eight C. albifrons, eight C. apella) from the collections of the Primate Research Center (Kyoto University, Japan) and the Japan Monkey Center (Inuyama, Japan) was subjected to computed tomography (CT) scanning. Serial coronal scans were taken at 1-mm intervals on a HiSpeed Advantage RP CT scanner (General Electric Medical Systems, Waukesha, WI) with intensity settings of 120 kV and 150 mA (Fig. 2). Sections were digitized on an ALLEGRO graphics workstation (ISG Technologies, Mississauga, Ontario, Canada) using the ALLEGRO software package to create virtual three-dimensional reconstructions, from which sinus volumes can be obtained directly. Visualization was performed with Amira 4.0 (Mercury Computer Systems, Chelmsford, MA); see Fig. 3.

thumbnail image

Figure 2. Computed tomography (CT) scans (a-c) at different views and 3D image (d) of the skull of an adult male Cebus apella to visualize the pattern of cranial pneumatization. (a) CT scan in the transverse plane, (b) CT scan in the sagittal plane, (c) CT scan at the coronal plane. The brightness of the 3D image in (d) was set to maximize the visualization of internal structures. 1 = right maxillary sinus, 2 = right frontal sinus. Bars: 2 cm. (d) produced using Volocity 4.0 (Improvision, Conventry, UK).

Download figure to PowerPoint

thumbnail image

Figure 3. Pneumatization visualization in Cebus apella. The maxillary sinuses are highlighted in red, with the outer table of bone made transparent. Produced using Amira 4.0 (Mercury Computer Systems, Chelmsford, MA).

Download figure to PowerPoint

Table 2. Sample utilized
TaxonMuseumaSexb
  • All specimens are adult, as judged by dental eruption.

  • a

    JMC, Japan Monkey Center, Inuyama; PRC, Primate Research Center; Kyoto University.

  • b

    ?, indeterminate sex.

Cebus albifronsJMC?
 JMC?
JMC?
PRCF
PRCF
PRCM
JMCM
JMCM
C. apellaPRCF
 PRCF
PRCF
PRCF
PRCF
PRCM
PRCM
PRCM

To compare the relative size of the maxillary sinuses, sinus volume was scaled by two measures of cranial size. In the first instance, volumes of the right maxillary sinus (in cc) are divided by basicranial length (basion-nasion), measured with sliding calipers. This is a standard measure of cranial size, although it may not be completely appropriate for scaling paranasal pneumatization (Rae and Koppe, 2000). The second analysis scales sinus size by an approximation of facial volume; raw sinus volumes were divided by the product of palatal length (orale-staphylion), facial height (nasion-prosthion), and bimaxillary width (zygomaxillare-zygomaxillare; Rae and Koppe, 2000). Both relative sinus size data sets were analyzed by t-tests with a significance level of P < 0.05 using SPSS for Windows 12.0.1 (SPSS Inc., Chicago, IL).

RESULTS

  1. Top of page
  2. Abstract
  3. MATERIALS AND METHODS
  4. RESULTS
  5. DISCUSSION
  6. Acknowledgements
  7. LITERATURE CITED

Sinuses in Cebus

The paranasal cavity system of Cebus consists of two sets of paired sinuses: maxillary and frontal sinuses. The maxillary sinus pneumatizes almost the entire maxilla beyond the maxillary canine. Several recesses, including a palatal recess, a frontal recess and a zygomatic recess, enlarge the size of the maxillary sinus. The sinus is in close proximity to the maxillary molars. In adults, the roots of the maxillary molars regularly project into the maxillary sinus floor. The paired frontal sinus pneumatizes part of the interorbital septum and enlarges into the supraorbital torus; large parts of the orbital roof are also pneumatized. Whether ethmoidal air cells are also developed in Cebus is unclear from the available CT scans. As the homology of the frontal sinuses in platyrrhines and catarrhines is currently subject to debate (Rossie, 2003), only the maxillary sinuses are considered here.

Sinus Size in Cebus

Statistical comparisons between the relative volumes of the maxillary sinuses of the two species are summarized in Table 3. Independent sample t-tests for both scaled variables show no significant differences between species at P < 0.05. Figure 4 shows box-and-whisker plots for each analysis. Thus, it can be concluded that the presence of higher masticatory stresses and strains in the facial skeleton do not have a significant effect on the degree of pneumatization in cebid primates. It is worth noting that the size of the samples is somewhat modest, increasing the chance of Type II error. Even given this, however, the degree of overlap between the ranges is compelling.

thumbnail image

Figure 4. Box-and-whisker plots of comparisons of scaled sinus size: heavy horizontal line is the median, shaded area is the interquartile range, thin vertical line is the range. (a) Right sinus volume divided by basion-nasion length; (b) right sinus volume divided by facial volume (palatal length × facial height × facial width). In each case, there is no statistically significant difference between species at P < 0.05.

Download figure to PowerPoint

Table 3. Results of the statistical analyses
ComparisonNMeanStd. Dev.tSig.Mean differenceStd. error difference
C. apella v80.2530.068−0.5950.561−0.0200.034
C. albifrons (basicranial length)80.2330.068 (ns) 
C. apella v80.0350.0140.3100.761.0020.006
C. albifrons (facial volume)80.0370.008 (ns) 

DISCUSSION

  1. Top of page
  2. Abstract
  3. MATERIALS AND METHODS
  4. RESULTS
  5. DISCUSSION
  6. Acknowledgements
  7. LITERATURE CITED

The above demonstration that masticatory stress models fail to explain the size and/or presence of paranasal sinuses in anthropoid primates leave a lacuna in our understanding of the architecture of the anthropoid craniofacial skeleton. One alternative explanation may be consideration of space-related trade-offs in cranial form, which have been advocated previously as explanations for the existence/function of craniofacial pneumatization. This type of explanation treats paranasal sinuses essentially as “spandrels” (Gould and Lewontin, 1979), either dead-end spaces created by the structural incongruence between various cranial capsules (Weidenreich, 1924) or interspaces between cranial organs such as the brain and the orbits (Hofer, 1965; Hershkovitz, 1977). For example, Cacajao and Saimiri seem to lack a true maxillary sinus (Rossie, 2006), unlike other platyrrhines (Hershkovitz, 1977; Nishimura et al., 2005, Rossie, 2006); this may be due to spatial limitations caused by large orbits and a distinct inferior nasal meatus in these genera, which could hinder secondary pneumatization. Using the “trade-off” approach, the well-developed maxillary sinus of Cebus could be interpreted as a consequence of the combination of a small nasal cavity breadth and relatively wide palate (Rossie, 2006).

There are obviously ways to counteract the high forces generated by the masticatory muscles during feeding of hard objects (Antón, 1996) other than changing sinus volume. For example, C. apella is known to possess thick enamel caps on its molar teeth, a condition which has been linked to hard object feeding (Dumont, 1995). Unfortunately, the other platyrrhine hard object specialists, the pitheciines, posses thin enamel; indeed, processing a mechanically tough diet does not require enamel of any particular thickness (Martin et al., 2003) and other aspects of C. apella dental morphology are not specifically associated with its tough diet (Wright, 2005). More convincing are the morphological differences of the craniofacial skeleton observed in C. apella and C. albifrons, which seem to be evident relatively early in ontogeny (Cole, 1992).

Paranasal sinuses grow within the framework of the craniofacial skeleton. During ontogeny they seem to pneumatize bone as much as is possible (Witmer, 1997). Although there is ample evidence that the distribution of mechanical loads within the facial skeleton has a major impact on craniofacial morphology (e.g., Antón, 1996), it is questionable whether the same holds true for paranasal sinus volume. In this context it is interesting to note that even humans with cleft lips and palates possess a maxillary sinus that can be predicted from the size of the facial skeleton (Koppe et al., 2006). These observations, together with the results of this study, support the idea (Hylander and Johnson, 1997) that the bony structures of the facial skeleton cannot be understood solely as a means of counteracting masticatory stress. As a result, the biomechanical hypothesis of sinus function can be considered falsified. It is only with continued explicit testing of proposed sinus functions that we can hope to understand these fascinating “empty spaces”.

Acknowledgements

  1. Top of page
  2. Abstract
  3. MATERIALS AND METHODS
  4. RESULTS
  5. DISCUSSION
  6. Acknowledgements
  7. LITERATURE CITED

We thank Y. Hamada (Inuyama, Japan) for providing the material used in this study. We are grateful to Y. Ohkawa (Okayama, Japan) and S. Hadlich (Greifswald, Germany) for the acquisition of the CT data, and to B. Demes for comments on an earlier version. The final version was vastly improved by comments from Eric Delson and an anonymous reviewer. Finally, we thank S. Marquez for inviting us for this special issue on the paranasal sinuses.

LITERATURE CITED

  1. Top of page
  2. Abstract
  3. MATERIALS AND METHODS
  4. RESULTS
  5. DISCUSSION
  6. Acknowledgements
  7. LITERATURE CITED
  • Antón SC. 1996. Cranial adaptation to a high attrition diet in Japanese macaques. Int J Primatol 17: 401427.
  • Blanton P,Biggs N. 1969. Eighteen hundred years of controversy: the paranasal sinuses. Am J Anat 124: 135148.
  • Cave A,Haines R. 1940. The paranasal sinuses of the anthropoid apes. J Anat 74: 493523.
  • Clark K. 1968. The drawings of Leonardo da Vinci in the collection of Her Majesty the Queen. London: Phaidon.
  • Cole TM,III. 1992. Postnatal heterochrony of the masticatory apparatus in Cebus apella and Cebus albifrons. J Hum Evol 23: 253282.
  • Conroy G. 1987. Problems of body-weight estimation in fossil primates. Int J Primatol 8: 115137.
  • Coon C. 1962. The origin of races. New York: Alfred A. Knopf.
  • Daegling DJ. 1992. Mandibular morphology and diet in the genus Cebus. Int Primatol 13: 545570.
  • Dumont E. 1995. Enamel thickness and dietary adaptation among extant primates and chiropterans. J Mammal 76: 11271136.
  • Gould S,Lewontin R. 1979. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc Roy Soc Lond B 205: 581598.
  • Hershkovitz P. 1977. Living New World monkeys (Platyrrhini), with an Introduction to the Primates. Vol. 1. Chicago: Chicago University Press.
  • Hofer H. 1965. Die morphologische Analyse des Schädels des Menschen. In: HebererG, editor. Menschliche Abstammungslehre. Stuttgart: G Fischer. p 145226.
  • Hylander WJ,Johnson KR. 1997. In vivo bone strain patterns in the zygomatic arch of macaques and the significance of these patterns for functional interpretations of skull form. Am J Phys Anthropol 102: 203232.
  • Koppe T,Ohkawa Y. 1999. Pneumatization of the facial skeleton in catarrhine primates. In: KoppeT,NagaiH,AltKW, editors. The paranasal sinuses of higher primates: development, function and evolution. Chicago: Quintessence. p 77119.
  • Koppe T,Nagai H. 1997. Growth pattern of the maxillary sinus in the Japanese macaque (Macaca fuscata): reflections on the structural role of the paranasal sinuses. J Anat 190: 533544.
  • Koppe T,Röhrer-Ertl O,Hahn D,Reike R,Nagai H. 1995. Growth pattern of the maxillary sinus in orang-utan based on measurements of CT scans. Okajimas Folia Anat Jpn 71: 311318.
  • Koppe T,Swindler D,Lee S. 1999. A longitudinal study of the growth pattern of the maxillary sinus in the pig-tailed macaque (Macaca nemestrina). Folia Primatol 70: 301312.
  • Koppe T,Weigel C,Bärenklau M,Kaduk W,Bayerlein T,Gedrange T. 2006. Maxillary sinus pneumatization of an adult skull with an untreated bilateral cleft palate. J Cranio Maxillofac Surg 34: 9195.
  • Lund V. 1988. The maxillary sinus in the higher primates. Acta Otolaryngol 105: 163171.
  • Martin LB,Olejniczak AJ,Maas MC. 2003. Enamel thickness and microstructure in pitheciin primates, with comments on dietary adaptations of the middle Miocene hominoid Kenyapithecus. J Hum Evol 45: 351367.
  • Masterson TJ. 1997. Sexual dimorphism and interspecific cranial form in two capuchin species: Cebus albifrons and C. apella. Am J Phys Anthropol 104: 487511.
  • Negus V. 1958. The comparative anatomy and physiology of the nose and paranasal sinuses. Edinburgh: E & S Livingstone.
  • Nishimura TD,Takai M,Tsubamoto T,Egi N,Shigehara N. 2005. Variation in maxillary sinus anatomy among platyrrhine monkeys. J Hum Evol 49: 370389.
  • Nishimura TD,Takai M,Maschenko EN. 2007. The maxillary sinus of Paradolichopithecus sushkini (late Pliocene, southern Tajikistan) and its phyletic implications. J Hum Evol 52: 637646.
  • Novacek M. 1993. Patterns of diversity in the mammalian skull. In: HankenJ,HallB, editors.The skull. Vol. 2: Patterns of structural and systematic diversity. Chicago: University of Chicago Press. p 438545.
  • Paulli S. 1900. Über die Pneumaticität des Schädels bei den Säugethieren. III. Über die Morphologie des Siebbeins und Pneumaticität bei den Insectivoren, Hyracoideen, Chiropteren, Carnivoren, Pinnipedien, Edentaten, Rodentiern, Prosimien und Primaten. Gegenbaurs Morphol Jahrb 28: 483564.
  • Preuschoft H,Witte H,Witzel U. 2002. Pneumatized spaces, sinuses and spongy bones in the skulls of primates. Anthropol Anz 60: 6779.
  • Proetz A. 1941. Essays on applied physiology of the nose. St. Louis: Annals.
  • Prossinger H,Bookstein F,Schafer K,Seidler H. 2000. Reemerging stress: supraorbital torus morphology in the mid-sagittal plane? Anat Rec 261: 170172.
  • Rae TC. 1999. The maxillary sinus in primate paleontology and systematics. In: KoppeT,NagaiH,AltK, editors. The paranasal sinuses of higher primates: development, function and evolution. Chicago: Quintessence. p 177189.
  • Rae TC,Koppe T. 2000. Isometric scaling of maxillary sinus volume in hominoids. J Hum Evol 38: 411423.
  • Rae TC,Koppe T. 2002. 3D imaging and measurement in studies of cranial pneumatization. In: MafartB,DelingetteH, editors.Three-dimensional imaging in paleoanthropology and prehistoric archeology. Oxford: British Archaeological Report International Series 1049. p 1116.
  • Rae TC,Koppe T. 2004. Holes in the head: evolutionary interpretations of the paranasal sinuses in catarrhines. Evol Anthropol 13: 211223.
  • Rae TC,Hill RA,Hamada Y,Koppe T. 2003. Clinal variation of maxillary sinus volume in Japanese macaques (Macaca fuscata). Am J Primatol 59: 153158.
  • Rae TC,Röhrer-Ertl O,Wallner C-P,Koppe T. 2007. Paranasal pneumatization of two late Miocene colobines: Mesopithecus and Libypithecus (Cercopithecidae: Primates). J Vert Paleo 27: 768771.
  • Ross C,Patel B,Slice D,Strait D,Dechow P,Richmond B,Spencer M. 2005. Modeling masticatory muscle force in finite element analysis: sensitivity analysis using principal coordinates analysis. Anat Rec A 283: 288299.
  • Rossie JB. 2003. Ontogeny, homology, and phylogenetic significance of anthropoid paranasal sinuses. Ph.D. thesis, Yale Univ.
  • Rossie JB. 2005. Anatomy of the nasal cavity and paranasal sinuses in Aegyptopithecus and early Miocene African catarrhines. Am J Phys Anthropol 126: 250267.
  • Rossie JB. 2006. Ontogeny and homology of the paranasal sinuses in Platyrrhini (Mammalia: Primates). J Morphol 267: 140.
  • Rossie JB,Simons EL,Gauld SC,Rasmussen DT. 2002. Paranasal sinus anatomy of Aegyptopithecus: implications for hominoid origins. Proc Natl Acad Sci USA 99: 84548456.
  • Scott RS,Ungar PS,Bergstrom TS,Brown CA,Grine FE,Teaford MF,Walker A. 2005. Dental mircowear texture analysis shows within-species diet variability in fossil hominins. Nature 436: 693695.
  • Shea B. 1977. Eskimo craniofacial morphology, cold stress and the maxillary sinus. Am J Phys Anthropol 47: 289300.
  • Smith AL,Strait DS,Chalk J,Wright BW,Wang Q,Dechow PC,Richmond BG,Ross CF,Spencer MA. 2007. Fill in the blanks: trabecular bone and the biomechanical consequences of having paranasal sinuses. Am J Phys Anthropol Suppl 44: 220 (abstract).
  • Spoor F,Zonneveld F. 1999. Computed tomography-based three-dimensional imaging of hominid fossils: features of the Broken Hill 1, Wadjak 1, and SK 47 crania. In: KoppeT,NagaiH,AltK, editors. The paranasal sinuses of higher primates: development, function and evolution. Chicago: Quintessence. p 207226.
  • Stierna P,Westrin K. 1999. Physiology of the paranasal sinuses in health and disease. In: KoppeT,NagaiH,AltK, editors. The paranasal sinuses of higher primates: development, function, and evolution. Chicago: Quintessence. p 5164.
  • Ungar PS. 1994. Incisor microwear of Sumatran anthropoid primates. Am J Phys Anthropol 94: 339363.
  • Ward S,Pilbeam D. 1983. Maxillofacial morphology of Miocene hominoids from Africa and Indo-Pakistan. In: CiochonR,CorrucciniR, editors. New interpretations of ape and human ancestry. New York: Plenum. p 211238.
  • Weidenreich F. 1924. Über die pneumatischen Nebenräume des Kopfes. Ein Beitrag zur Kenntnis des Bauprintips des Knochens, des Schädels und des Körpers (Knochenstudien: III. Teil). Z Anat Entwickl Gesch 72: 5593.
  • Wetzel G. 1925. Versuche und Beobachtungen zur Schädelstatik. Z Anat Entwickl Gesch 76: 261283.
  • Wetzel G,Schröder B. 1925. Der Dicherheitsgrad im Bau des Gesichtsgerüstes gegenüber dem Kaudruck. Wilhelm Roux' Arch Entwicklungsmech 105: 120148.
  • Witmer L. 1997. The evolution of the antorbital cavity of archosaurs: a study in soft-tissue reconstruction in the fossil record with an analysis of the function of pneumaticity. Soc Vert Paleo Mem 3: 173.
  • Witzel U,Preuschoft H. 1999. The bony roof of the nose in humans and other primates. Zool Anz 238: 103115.
  • Witzel U,Preuschoft H. 2002. Function-dependent shape characteristics of the human skull. Anthropol Anz 60: 113115.
  • Wright BW. 2005. Craniodental biomechanics and dietary toughness in the genus Cebus. J Hum Evol 48: 473492.