The Fish in the Turtle: On the Functionality of the Oropharynx in the Common Musk Turtle Sternotherus odoratus (Chelonia, Kinosternidae) Concerning Feeding and Underwater Respiration

Authors


Abstract

In tetrapods, the oropharyngeal cavity and its anatomical structures are mainly, but not exclusively, responsible for the uptake and intraoral transport of food. In this study, we provide structural evidence for a second function of the oropharynx in the North American common musk turtle, Sternotherus odoratus, Kinosternidae: aquatic gas exchange. Using high-speed video, we demonstrate that S. odoratus can grasp food on land by its jaws, but is afterward incapable of lingual based intraoral transport; food is always lost during such an attempt. Scanning electron microscopy and light microscopy reveal that the reason for this is a poorly developed tongue. Although small, the tongue bears a variety of lobe-like papillae, which might be misinterpreted as an adaptation for terrestrial food uptake. Similar papillae also cover most of the oropharynx. They are highly vascularized as shown by light microscopy and may play an important role in aquatic gas exchange. The vascularization of the oropharyngeal papillae in S. odoratus is then compared with that in Emys orbicularis, an aquatic emydid with similar ecology but lacking the ability of underwater respiration. Oropharyngeal papillae responsible for aquatic respiration are also found in soft-shelled turtles (Trionychidae), the putative sister group of the kinosternids. This trait could therefore represent a shared, ancestral character of both groups involving advantages in the aquatic environment they inhabit. Anat Rec 293:1416–1424, 2010. © 2010 Wiley-Liss, Inc.

Ancillary