SEARCH

SEARCH BY CITATION

Keywords:

  • lymphatics;
  • upper abdomen;
  • peritoneum;
  • fusion fascia;
  • human fetus

Abstract

  1. Top of page
  2. Abstract
  3. MATERIALS AND METHODS
  4. RESULTS
  5. DISCUSSION
  6. LITERATURE CITED

Using semiserial sections from 19 human fetuses of 8–30 weeks gestation, we examined the topohistology of the upper abdominal lymphatics and compared it with that of the lower abdominal and pelvic lymphatics. The upper abdominal lymphatics were characterized by an intimate relationship with the peritoneal lining, a common mesentery for the celiac trunk and superior mesenteric artery (SMA). Lymphatic connections from the upper abdominal viscera to the paraaortic and paracaval areas followed two routes: (1) from the intestinal mesentery, along the peritoneum on the left aspect of the proximal SMA, via the chain of lymph follicles (LFs) lying along the retropancreatic fusion fascia, to drain into the LFs around the left renal vein; (2) from sites along the peritoneum on the posterior wall of the omental bursa, via the root of the hepatoduodenal ligament, to drain into LFs around the vena cava. The development of these two posterior drainage routes seemed to be promoted by the peritoneum or a peritoneal remnant (i.e., fusion fascia) attaching to the great vessels, and inhibited or impeded by the developing nerves and diaphragm. No paraaortic, paracaval, or pelvic LFs lay along the peritoneum. The pelvic LFs were usually located along the bundle of lymphatic vessels originating from the femoral canal. Anat Rec, 2012. © 2011 Wiley Periodicals, Inc.

The lymphatics (i.e., lymph nodes and lymphatic vessels) in the human abdominopelvic region are generally believed to accompany arteries and veins (Haagensen,1972; Gabella,1995). This rule, perhaps even a dogma, has been applied to cancer surgery in which lymphadenectomy should be conducted after treatment or ligation of the artery and vein (Japanese Research Society for Gastric Cancer,1995; Japanese Pancreas Society,1996). Does the fetal lymphatic vessel develop along the artery and vein? Actually, previous dye-injection studies using fresh full-term fetuses found that thin lymphatic vessels run along both arteries and veins, and these studies might provide the basis for the present knowledge of the adult lymphatic morphology (Inoue,1936; Hiraki,1958). However, to the best of our knowledge, no adult lymphatic vessels have been described as running along the portal vein tributaries and joining at the venous confluence. According to Sabin (1909,1912), in the early stages of gestation, for example, at 9 weeks, the thoracic duct generates buds for the future intestinal lymph trunks, and the retroperitoneal lymph sac (i.e., cisterna chyli) appears at the root of the mesentery of the midgut. Thus, it seems likely that the fetal upper abdominal lymphatic vessels develop along the superior mesenteric artery (SMA) and celiac trunk (CT). However, Jin et al. (2010) described that fetal visceral lymphatic vessels do not usually run along the artery and vein.

In this context, we would like to elucidate the lymphatic morphology “later than that Sabin described” because of no or few references on the topographical anatomy of the abdominopelvic lymphatics developing from the early buds. Moreover, in adults, the upper abdominal lymphatic vessels have a character different from the lower abdominal and pelvic vessels: the former should descend to the level of the left renal vein and drain into the thoracic duct (Deki and Sato,1988; Ito and Mishima,1994; Hirai et al.,2001a,b). Does the developing autonomic nerve plexus disrupt the outgrowth of the lymphatic vessels to provide the descending course? We hypothesized that specific morphologies that would promote budding of the lymphatic vessels should be present around the left renal vein, to allow easy connection between the upper abdominal viscera and the thoracic duct. Consequently, the first aim of this study was to elucidate how and why the upper abdominal lymphatic vessels descend to the lower level and connect with the thoracic duct. We do not believe that the topographical anatomy of fetal lymphatics simply corresponds to a miniversion of the adult morphology. Therefore, with a close relationship to the first aim, the second aim of this study was to find and discuss the critical differences between the adult and fetal lymphatic morphologies, according to observations in midterm fetuses.

MATERIALS AND METHODS

  1. Top of page
  2. Abstract
  3. MATERIALS AND METHODS
  4. RESULTS
  5. DISCUSSION
  6. LITERATURE CITED

According to the provisions of the Declaration of Helsinki (1995, revised Edinburgh 2000), we examined 19 early stage and late stage fetuses: eight fetuses between 10 and 15 weeks of gestation (four males and four females; craniocaudal length [CRL] 50–115 mm) and 11 fetuses between 18 and 30 weeks (six males and five females, CRL 152–280 mm). With the agreement of the families, the early stage group was donated to the Department of Anatomy, Chonbuk National University, Korea, and their use for research was approved by the University's ethics committee. These specimens were fixed in 10% formalin solution and embedded in paraffin for histology. The late-stage group had been fixed in 10% formalin solution and preserved as a collection for medical education and research at the Medical Museum of Sapporo Medical University, Japan, for more than 30 years. Because there was no possibility of contacting the families, and the fetuses were part of the museum collection, the project using these late-stage fetuses did not include a specific protocol that was examined and approved by a suitably constituted institutional ethics committee.

The paraffin sections examined were 5 μm (early stage fetuses) or 10 μm thick (late-stage fetuses) and had been cut at 50 μm (early stage) or 100 μm intervals (late stage). Horizontal sections were prepared for 13 fetuses (five early stage and eight late-stage fetuses), and sagittal sections for six fetuses (three early stage and three late-stage fetuses). More than 100 sections were cut from each early stage fetus (more than 200 from each late-stage fetus). From three of the late-stage group (one male and two females; horizontal sections; Table 1), we obtained specimens containing the entire abdominopelvic region. However, the specimens from the other fetuses were limited to the upper abdomen. Most of the sections were stained with hematoxylin and eosin (HE), but some (5–6 sections per fetus) obtained from the early stage group were used for immunohistochemistry of the lymphatic vessels (see below).

Table 1. Distribution of the abdominal and pelvic lymph follicles: A sum of cross sectional areas (mm2) measured with 0.3 mm interval
Sites of lymph folliclesSpecimen ASpecimen BSpecimen C
  • Specimens A, B, and C: a male (20 weeks, CRL 170 mm), a female (20 weeks, CRL 180 mm), and a female (18 weeks, CRL 152 mm) fetuses, respectively.

  • CA, celiac axis; IMA, inferior mesenteric artery; SMA, superior mesenteric artery.

  • a

    Distal to the left renal vein; proximal to a site in the anterior side of the duodenum; along the peritoneum facing the duodenojejunal junction.

  • b

    Plane in front of and along the retropancreatic fusion fascia or a remnant of the primitive mesoduodenum (Michels, 1955).

  • c

    Right aspect of the mesentery containing hepatic artery and SMA; along the peritoneum facing the liver caudate lobe.

  • d

    Along the obturator nerve; along the iliac vessels below the umbilical artery.

SMA, left aspect, proximala4.56.56.0
Retropancreatic planeb3.03.83.3
Ventral aspect of the pancreatic head2.04.51.3
Along the splenic artery to the spleen4.52.31.8
Along the left gastric artery3.50.83.0
Hepatoduodenal ligament, right, proximalc4.37.58.5
(HBP region total)(21.8)(25.4)(23.9)
Paraaortic and paracaval areas
Above the CA origin2.01.03.8
Level between the CA and SMA2.81.34.1
Level between the SMA and IMA19.016.823.3
Level between IMA and bifurcation3.55.88.3
IMA origin, proximal 1 mm2.03.03.8
(Paraaortic areas total)(29.3)(27.9)(43.3)
Common iliac, above the umbilical artery8.813.09.0
Along the obturater nerved12.39.010.5
Inguinal, inside of the body wall8.37.52.8
Pararectal, in the rectal adventitia0.51.00.5
Along the sacral nerve root0.50.81.3
(Pelvic region total)(30.4)(31.3)(24.1)

For D2-40 immunohistochemistry for lymphatic endothelium, according to the methods of Yonemura et al. (2006) and Yajin et al. (2009), the primary antibody (monoclonal anti-human podoplanin; Nichirei D2-40; Nichirei, Tokyo, Japan; 1:100 dilution) was used after immersion in a ligand activator (Histofine SAB-PO Kit; Nichirei, Tokyo, Japan) and autoclaving (105°C, 10 min). The second antibody (Dako Chem Mate Envison Kit; Dako, Glostrup, Denmark) was labeled with horseradish peroxidase (HRP), and antigen-antibody reactions were detected by the HRP-catalyzed reaction with diaminobenzidine, followed by counterstaining with hematoxylin. For smooth-muscle actin immunohistochemistry, the primary antibody was monoclonal anti-human alpha-1 smooth-muscle actin (Dako M85; Dako, Glostrup, Denmark), and the second antibody reaction was the same as for D2-40. According to Gerecht-Nir et al. (2004) and Hayashi et al. (2008), Dako M85 stains the endothelium of arteries and veins as well as vascular smooth muscles, but produces no reaction with lymphatic endothelium. Counterstaining was not performed for the smooth-muscle actin immunohistochemistry. In addition, lymph follicles (LFs; developing lymph nodes) were examined immunohistochemically using anti IgM, anti-CD3 and anti-CD68 antibodies (Dako, Glostrup, Denmark) as markers of B lymphocytes, T lymphocytes, and macrophages, respectively.

RESULTS

  1. Top of page
  2. Abstract
  3. MATERIALS AND METHODS
  4. RESULTS
  5. DISCUSSION
  6. LITERATURE CITED

General Observations

Smooth-muscle actin immunohistochemistry displayed a negative reaction to candidate lymphatic vessels (Fig. 1A), in contrast to positive immunoreactivity with the endothelium of thin arteries and veins as well as any visceral and vascular smooth muscle. D2-40 effectively stained thin lymphatic vessels, even when they were collapsed (Fig. 1B,C). However, as recently reported by Yajin et al. (2009), the staining was usually uneven. Thus, candidate lymphatic vessels were likely to show negative immunoreactivity, despite the fact that their lumens were directly attached to accumulations of lymphocytes in the follicles. Following these immunohistochemical observations, in the descriptions below, we identified lymphatic vessels as a dilated lumen enclosed by a very thin monolayer of cells using HE staining.

thumbnail image

Figure 1. Immunohistochemistry for fetal lymphatic vessels. Panel A (15 weeks of gestation, CRL, 115 mm, female) contains pelvic lymphatic vessels between the uterus and ureter. In panel A, walls of the artery and vein are immunoreactivity positive for smooth muscle actin antibody (arrows), whereas candidates of lymphatic vessels are negative (stars). Panel B (15 weeks of gestation, CRL, 118 mm, male) contains the pancreatic head (panc) and superior mesenteric artery and vein (SMA, SMV). Panel C is a higher magnification view of a square in panel B. In panels B and C, D2-40 positive lymphatic vessels are seen along autonomic nerves and lymph follicles (LF). However, the staining is uneven and the lymphatic vessel candidates (arrows) are likely to be negative despite the fact that the lumen directly attach to accumulation of lymphocytes in a follicle. D2-40 positive vessels are also seen in and around the second portion of the duodenal (D2), but they are very thin and usually collapsed. A section in 0.1 mm left side of panel B will be shown in Fig. 3B. Scale bar (I.0 or 0.3 mm), in the lower margin of each panel.

Download figure to PowerPoint

The follicles contained IgM-carrying cells (B lymphocytes), CD-3-positive T lymphocytes, and CD-68-positive macrophages (figures not shown). At all abdominopelvic sites, the T lymphocytes were segregated in the central part of the node-like structure, whereas the B lymphocytes and macrophages appeared to be distributed at random. No subcapsular sinus macrophages were observed. At all the fetal stages examined, the “nodes” had not yet differentiated into structures such as the cortex and medulla. Thus, the term “lymph follicle” (LF or LFs) is used in the present description instead of the usual term “lymph node.” The LFs accompanied, and even contained, the developing lymphatic vessels (Figs. 1, 2, 5, 6, 7, and 10). Often, the lymphatic vessels did not accompany an artery or vein (Figs. 2B, 4, 7, and 10). In the late-stage fetuses (Figs. 3, 5, 8, and 9B), the LFs were full of cellular components and embedded in a relatively tight connective tissue, and thus the lymphatic vessels were difficult to identify. Notably, the portal vein and its tributaries did not accompany thick nerves, in contrast to branches of the CT and SMA, which were surrounded by a thick autonomic nerve plexus (Figs. 1, 3–8). The inferior vena cava was also accompanied by autonomic nerves, but much less than the aorta (Figs. 2, 3, 5, 6, 8, and 9). Likewise, the pelvic arteries and veins were accompanied by no or only a few nerves (Fig. 10).

thumbnail image

Figure 2. Thick drainage vessels from a paraaortic node to the thoracic duct. A fetus of the early staged group. Horizontal section (upper side of the figure, posterior side of the body). A level immediately inferior to the left renal vein (invisible). Panel B is a higher magnification view of a square in panel A. Thick lymphatic vessels (open stars) originate from a paraaortic lymph follicle (LF with white star) and drain into the thoracic duct (TD). A thick tributary of the TD is seen between left crura of the diaphragm. Arrows in panel A indicate the retroperitoneal fusion fascia. A cluster of lymphatic vessels (asterisk in panel A) is evident near the third portion of the duodenum (D3). L2/3, intervertebral disk between the second and third lumbar vertebrae. Scale bar (I.0 mm), in the lower margin of panel A.

Download figure to PowerPoint

thumbnail image

Figure 3. Lymph follicles extending along the peritoneum and retroperitoneal fusion fascia. A fetus of the late-staged group. Sagittal sections (upper side of the figure, posterior side of the body; left-hand side of the figure, inferior side of the body). Levels including the aorta (AO) and inferior vena cava (IVC). Panel A (or D) is the right (or left) end of these four panels. Intervals between panels are 0.6 mm (A and B), 1.2 mm (B and C), and 1.2 mm (C and D), respectively. Panel A displays the peritoneal fold (arrowheads) containing the common hepatic artery (CHA) and lymph follicles (LF) along the peritoneum. In panels A and B, LFs at the root of the hepatoduodenal ligament continue to the area in front of the IVC. Panel C exhibits a chain of LFs (arrows) along the posterior aspect of the peritoneal cavity (PC, i.e., the lesser sac). This chain continues to LFs near the superior mesenteric vein (SMV) via the retropancreatic chain of LFs (arrows in panel D). All panels are taken at the same magnification (scale bar in panel A, 1 mm).

Download figure to PowerPoint

thumbnail image

Figure 4. Subperitoneal lymph follicles develop and extend into the retroperitoneal area. A fetus of the early staged group. Sagittal sections (upper side of the figure, posterior side of the body; left-hand side of the figure, inferior side of the body). An interval between panels is 1.2 mm. Panel A displays the subperitoneal lymph follicles (arrowheads) extending into the retropancreatic area (arrows). The hepatoduodenal ligament extends to the lower side of the figure. Panel B exhibits abundant lymphatic vessels (arrows) developing in the retropancreatic area. In contrast to no LFs near the superior mesenteric artery (SMA), subperitoneal LFs develop well in the mesentery for the jejunum and ileum. In the distal part of the mesentery (outside of the figure), there are no or few LFs. In this section, the gastric cardia and antrum are seen connected by a peritoneum (the primitive lesser omentum; asterisk). Panels A and B are prepared at the same magnification (scale bar in panel B, I.0 mm).

Download figure to PowerPoint

The thoracic duct and its thick tributaries ran along the posterior aspect of the aorta. However, at levels superior to the left renal vein, the bulky crura of the diaphragm interfered with the connection between the thoracic duct and the paracaval LFs (Figs. 2, 3, 5, and 6). However, the thick tributaries of the thoracic duct were able to pass through a gap between the crura of the diaphragm (Fig. 2). Paraaortic and paracaval LFs were found in all horizontal sections taken from levels between the origins of the SMA and the inferior mesenteric artery. However, the thick autonomic nerve plexus limited the anterior extension of these LFs (Figs. 3 and 6). The paraaortic and paracaval LFs tended to be larger when they occurred on the left anterior side of the aorta, as well as at a site between the aorta and the vena cava. A single, slender LF sometimes extended between the origin of the SMA and the aortic bifurcation. In contrast, the density of LFs was much lower on the superior side of the origin of the SMA (Table 1); in this region, the LFs were located on the lateral and posterior sides of the autonomic nerve elements. Notably, at levels immediately inferior to the left renal vein, thick lymphatic vessels were seen draining from the paraaortic LFs into the thoracic duct (Fig. 2). The cross-sectional areas of the paraaortic and paracaval LFs were usually up to 1.5-times greater than those of the other, peripherally located LFs (see below), but were often almost the same in both areas (Table 1).

thumbnail image

Figure 5. Mesentery of the jejunum and ileum. A fetus of the late-staged group. Horizontal section (upper side of the figure, posterior side of the body). A level immediately inferior to the left renal vein (LRV). Panel B or C is a higher magnification views of a square with B or C, respectively (panels B and C are taken at the same magnification; bar in panel B, 1 mm). Panel B displays paraaortic lymph follicles (LF) immediately behind the retroperitoneal fusion fascia. Panel A and C exhibit LFs distributing not along the superior mesenteric artery and vein (SMA, SMV) but along the peritoneum of the mesentery. L2, second lumbar vertebra; MCV, middle colic vein; RK, right kidney. Scale bar (I.0 mm), in the upper margin of panel A.

Download figure to PowerPoint

thumbnail image

Figure 6. Origin of the celiac trunk and the hepatoduodenal ligament. A fetus of the early staged group. Horizontal sections (upper side of the figure, posterior side of the body). Panel A (or C) is the superior most (or inferior most) of these three panels. Intervals between panels are 0.9 mm (A and B) and 1.0 mm (B and C), respectively. Panel A displays lymph follicles (LF) around the left gastric artery (LGA). LFs in the hepatoduodenal ligament are not distributed along the artery and vein but along the peritoneum (panels B and C). They are located near the inferior vena cava (IVC) at the right end (panels B and C), while they continue to the retropancreatic chain of LFs (arrows in panel C). All panels are taken at the same magnification (scale bar in panel A, 1 mm). LAC (RAC), left (right) adrenal cortex; LIPA, left inferior phrenic artery.

Download figure to PowerPoint

Upper Abdominal Lymphatics

The most striking observation in this study was found in the sagittal sections of the upper abdomen (Figs. 1B, 3, and 4): LFs were densely distributed in a single retroperitoneal layer or plate, which extended along the cranio-caudal axis (Figs. 3C,D and 4A). Notably, most parts of the LF-rich layer were located along and immediately outside the peritoneum. The layer extended superiorly along the posterior wall of the omental bursa toward the gastric cardia, and inferiorly into the jejunal and ileal mesentery. The superior and inferior parts of the LF-rich layer were connected by the retropancreatic chain of LFs (Figs. 3D and 4A). This retropancreatic connection was not present in the subperitoneal area but ran along the anterior aspect of the retroperitoneal fusion fascia (Figs. 7 and 8). The retropancreatic LFs developed later than, and originated from, the subperitoneal LFs lying along the posterior wall of the omental bursa behind the liver (Fig. 4A). Figures 5A,B show an atypical specimen without the retropancreatic chain of LFs, but in which LFs developed well behind the retropancreatic fusion fascia (cf. Fig. 8 at the same level as in Fig. 5). The LF-rich layer issued a posterior “rim,” which ran along the hepatopancreatic peritoneal fold and communicated with the paracaval LFs to provide posterior drainage (Figs. 3A,B and 4A).

In the jejunal and ileal mesentery, LFs were not distributed along the artery or vein, but along the peritoneum (Figs. 1B, 4B, and 5). Thus, no or only a few LFs were found between the SMA and the superior mesenteric vein. The LFs in the mesentery developed in a proximal to distal direction (Fig. 4). Likewise, in the hepatoduodenal ligament (Fig. 6), LFs were distributed along the surface peritoneum. In contrast, the artery and its surrounding nerves created a “core” in the mesentery, although collapsed lymphatic vessels were identified between the tightly packed nerves (Fig. 1B,C). The inferior vena cava was located near the subperitoneal LFs around the left gastric artery, as well as along the right aspect of the hepatoduodenal ligament (Figs. 3 and 6); this close relationship corresponded to one of the eventual posterior drainage routes. In contrast, the LFs lying along the left aspect of the ligament continued into the retropancreatic chain of LFs (Fig. 6B,C). Moreover, the retropancreatic chain of LFs extended leftward and anteriorly along the left side of the proximal SMA (Fig. 7). In this area, near the duodenojejunal flexture, the LFs faced toward the peritoneum (Fig. 8) and were connected to the LFs in the jejunal and ileal mesentery (Figs. 4 and 5). The retropancreatic chain of LFs was located far inferior to the transverse course of the splenic artery because the width of the pancreatic head was much smaller than the cranio-caudal length. In the early stage fetuses, the retropancreatic chain of LFs appeared to be separated from the left renal vein by a fusion fascia (Fig. 7); however, each of the LFs was embedded in the thick fascia in the late-stage fetuses (Fig. 8). The retropancreatic area was adjacent to another posterior drainage route at the level of the left renal vein (Fig. 2).

thumbnail image

Figure 7. Retropancreatic chain of lymph follicles continues to the mesentery of the jejunum and ileum. A fetus of the early stage group. Horizontal sections (upper side of the figure, posterior side of the body). A level including the left renal vein (LRV). An interval between panels A and B is 1.1 mm. Panel A displays lymph follicle (LF) developing along the left side of the superior mesenteric artery (SMA). Near the duodenum (D3, D4), an LF (LF with white star in panel A) accompanies abundant lymphatic vessels. Panels B exhibits the retropancreatic chain of lymph follicles extending into the mesentery of the jejunum and ileum. Arrows in panels A and B, lymphatic vessels along the LRV. Panels A and B are taken at the same magnification (scale bar in panel A, 1 mm). CBD, common bile duct; Henle, Henle's gastrocolic venous trunk; RAC, right adrenal cortex.

Download figure to PowerPoint

thumbnail image

Figure 8. Retropancreatic chain of lymph follicles continues to the left side of the superior mesenteric artery. A fetus of the late-staged group. Horizontal sections (upper side of the figure, posterior side of the body). A level immediately inferior to the left renal vein. The retropancreatic chain of lymph follicles (LF with white star) continues to the left side of the superior mesenteric artery. The LFs are distributed along the peritoneum facing the fourth portion of the duodenum. The third portion was fixed to the inferior vena cava (IVC) by a connective tissue band (asterisk). Some of the paracaval LFs (LF with asterisk) are embedded in the connective tissue. ASPDA, anterior superior pancreaticoduodenal artery; minor P, minor papilla of the duodenum. Scale bar (I.0 mm), in the upper margin of the figure.

Download figure to PowerPoint

The LFs along the left aspect of the proximal SMA also connected to a small group of LFs in the anterior aspect of the pancreatic head (Figs. 5 and 7). The LFs in the hepatoduodenal ligament also communicated with this anterior group (Fig. 6). The anterior group of LFs was located along or near the right gastroepiploic artery and middle colic vein. In addition, developing lymph vessels created a plexus near the third portion of the duodenum (Fig. 7A). However, this plexus appeared not to communicate with the LFs lying along the left aspect of the proximal SMA or with the retropancreatic chain of LFs. The LFs located in the hepatoduodenal ligament, along the left aspect of the proximal SMA and/or in the retropancreatic chain, consistently occupied larger areas in the horizontal sections than the other upper abdominal LFs (Table 1).

Overall, the lymphatic connections from the upper abdominal viscera to the paraaortic and paracaval areas could be classified as following two routes: (1) from the jejunal and ileal mesentery, via LFs on the left aspect of the proximal SMA which connected with the retropancreatic chain of LFs, to the paraaortic LFs near the left renal vein; (2) from sites along the splenic and left gastric arteries and from the hepatoduodenal ligament to the paracaval LFs. These two routes communicated mutually on the left aspect of the hepatoduodenal ligament and at the right end of the retropancreatic chain of LFs. In sagittal sections, most of those LFs were included in a LF-rich plate, which extended along the cranio-caudal axis.

Lower Abdominal and Pelvic Lymphatics

At levels inferior to the origin of the inferior mesenteric artery, the paraaortic and paracaval LFs were reduced in both size and number (Fig. 9, Table 1). Traveling along a similar course to the thoracic duct, thick lymphatic vessels ran along the vertebral column. The lower paraaortic and paracaval LFs, as well as the common iliac LFs, were connected to the deep vessels at several sites above the origin of the umbilical artery. The LFs lying along the inferior mesenteric artery (Fig. 9) were much smaller and fewer than those in the jejunal and ileal mesentery (Figs. 4 and 5). Details of this lower abdominal topographical anatomy have been published in a separate paper, in which both the present specimens and other midterm fetuses are described (Kinugasa et al.,2008; Matsubara et al.,2009).

thumbnail image

Figure 9. Lymph follicles around the origin of the inferior mesenteric artery. Fetuses of the early (panel A; the same fetus as shown in Fig. 7) and late- (panel B) staged groups. Horizontal sections (upper side of the figure, posterior side of the body). Lymph follicles (LF) are much fewer around the inferior mesenteric artery (IMA) than around the superior mesenteric artery (see Figs. 3, 5, and 6). Arrow in panels A and B indicate an inferior continuation of the thoracic duct. Panels A and B are taken at the same magnification (scale bar in panel A, 1 mm). L3, third lumbar vertebra; L3/4, intervertebral disk between the third and fourth vertebrae; LUR (RUR), left (right) ureter; OAV, ovarian artery and vein; PM, psoas major muscle; RK, right kidney.

Download figure to PowerPoint

At levels inferior to the umbilical artery (almost corresponding to the levels, which included the internal and external iliac arteries), the LFs became separated from the arteries and veins (Fig. 10). Thus, the LFs existed independently in the loose connective tissue between the obturator internus fascia and the rectal adventitia (Fritsch,1993), the latter of which contained autonomic nerves. The largest LF in the pelvis was consistently located along the obturator nerve (i.e., the obturator LF), while the second largest was found in the inguinal area between the gubernaculum and the external iliac vein (i.e., the inguinal LF). In this study, LFs lying outside the body wall were not counted as part of the inguinal LF (Table 1). The obturator LF accompanied a bundle of developing lymphatic vessels extending from the common iliac LFs to the inguinal LFs, which was separate from the external iliac artery and vein (Fig. 10). However, some lymphatic vessels accompanied arteries and veins near the pelvic viscera (Fig. 1A). LFs directly associated with the pelvic viscera were limited to a small number in the rectal adventitia (Table 1). Rarely, an LF was found near the urethra. In addition, a few LFs were consistently located near or along the sciatic nerve root. No intergender difference was found in the distribution, size or number of the pelvic LFs. Details of this pelvic topographical anatomy have been published in a separate article, in which both the present specimens and other midterm fetuses are described (Niikura et al.,2008,2010).

thumbnail image

Figure 10. Pelvic lymph follicles and lymphatic vessels. Fetuses of the early staged group (panel A, male, the same fetus as shown in Fig. 2; panel B, female, the same fetus as shown in Figs. 7 and 9A). Horizontal sections (upper side of the figure, posterior side of the body). A level including the deep inguinal ring. Lymph follicles (LF) are developed near the obturator nerve (ON). Lymphatic vessels (arrows) do not accompany any artery, vein, or nerve. Panels A and B are taken at the same magnification (scale bar in panel B, 1 mm). EIV, external iliac vein; G, gubernaculums; IEA, inferior epigastric artery; LUR (RUR), left (right) ureter; OA (OV), obturator artery (vein); PM, psoas major muscle; R, rectum.

Download figure to PowerPoint

DISCUSSION

  1. Top of page
  2. Abstract
  3. MATERIALS AND METHODS
  4. RESULTS
  5. DISCUSSION
  6. LITERATURE CITED

This study revealed that, in midterm fetuses, lymphatic connections from the upper abdominal viscera to the paraaortic and paracaval areas appear as chains of LFs or LF-rich plate-like tissue rather than as a bundle of lymphatic vessels. These chains could be classified as following two routes: (1) from the jejunal and ileal mesentery, via LFs on the left aspect of the proximal SMA, which connected with the retropancreatic chain of LFs, to the paraaortic LFs near the left renal vein; (2) from sites along the splenic and left gastric arteries and from the hepatoduodenal ligament to the paracaval LFs. Because of the specific courses, these two routes are most likely to correspond to the intestinal lymph trunks on the left and right sides of the SMA in adults (Hirai et al.,2001b). Notably, in midterm fetuses, the intestinal lymph trunks were not “vessels” but LF-rich plate-like tissues. Moreover, possibly due to the still-unfinished rotation of the duodenum (Kanagasuntheram,1960; Yu et al.,2010), most of these plates were located along the cranio-caudal axis, not along the dorsoventral axis. Because of the LF-rich plates, we were led to suspect that the classical theory that the “lymphatic vessels develop first, while the nodes develop second” (Sabin,1909,1912) might be erroneous. However, in the early stage specimens, the LFs had not yet been filled by cellular components but did contain vessel-like or reticular tissues. Thus, we confirmed the aforementioned theory.

When clinical terminology is used (Japanese Research Society for Gastric Cancer,1995), it is likely that only node groups Nos. 1, 2, 5–9, 11–14, 17, and 18 are involved in forming a single plate during ontogeny. In the LF-rich plate, the upper subperitoneal part was located along the posterior wall of the omental bursa behind the liver and at the root of the hepatoduodenal ligament, while the lower subperitoneal part extended into the jejunal and ileal mesentery. Notably, both parts were connected by the retropancreatic chain of LFs, which was distributed along the immediately anterior side of the retropancreatic fusion fascia or a remnant of the primitive mesoduodenum (Michels,1955; Cho et al.,2009). As Jeong et al. (2009) suggested, developing lymphatic vessels seem to pass through or run along a fusion site of the peritoneum. Overall, the upper abdominal LFs seem to develop at the root of the common mesentery containing the CT and SMA or the “mesenteric trunk” by Michels (1955). In contrast, outside the mesenteric trunk, such as near the kidneys and lateral body wall, no or only a few LFs were found; these were located along the parietal peritoneum. Even the mesentery for the inferior mesenteric artery did not contain so many LFs as in the upper abdomen. Moreover, in contrast to adults, the paraaortic and paracaval LFs were not much larger or greater in number than the upper abdominal visceral LFs; rather, the numbers at both sites seemed to be similar. Therefore, conversely, the mesenteric trunk seems to have a specific feature which promotes the development and growth of LFs. A limited reference to a hypothetical positive action of the peritoneum on lymphatic development was made by Solvason and Kearney (1992), although they did not discuss lymphatic vessel development. Likewise, previous research on vascular endothelial growth factors has not focused on abdominal topohistology (Karkkainen et al.,2003; Scavelli et al.,2004; Karpanen et al.,2006).

The autonomic nerve element showed a strong tendency to accompany arteries, especially the branches of the CT and SMA, possibly because of vascular-derived neurotrophic factors (Honma et al.,2002). Actually, Isogai et al. (2010) recently demonstrated, using rat embryos, the tyrosine hydroxylase-positive paraaortic ridge contributes much to the development of retroperitoneal visceral arteries. Conversely, the nerve appeared to “avoid” association with tributaries of the portal vein. We could easily see that the developing nerves were likely to interfere with lymphatic development along arteries. However, we were unable to explain why LFs never developed along the tributaries of the portal vein. Moreover, according to van der Putte and van Limborgh (1980), budding of the intestinal trunks occurs in a gap between two large obstacles in front of the aorta, that is, the adrenal cortex and the definite kidney, but not between nerve elements. The nerve tissues are still loose at the 8–10 week stage, during which the intestinal trunks bud from the thoracic duct according to the histology described by Sabin (1909). Indeed, even in our midterm fetuses, the periarterial nerve plexus contained abundant lymphatic vessels according to D2-40 staining. Thus, it seems reasonable that the nerves and lymphatic vessels can “share” the paraaortic space for their development in the early stages. Likewise, the crura of the diaphragm are likely to be a great obstacle to budding from the thoracic duct. However, thick lymphatic vessels often ran through a narrow gap between the crura to connect the thoracic duct and the paraaortic LFs. Furthermore, Yamada et al. (2003) reported that, in adults, the thoracic duct tributaries pass through the diaphragmatic crus.

We found two posterior drainage routes to the thoracic duct in fetuses: (1) around and near the left renal vein and (2) in front of the vena cava, near the hepatoduodenal ligament. In the former site, the retropancreatic fusion fascia was attached to the left renal vein, and lymphatic vessels penetrated the fascia. In the latter site, the peritoneum was attached to the vena cava at the base of the mesentery. At these sites, developing lymphatic vessels, which appeared to be budding, were often seen in the early stage specimens. Previous macroscopic studies (Deki and Sato,1988; Ito and Mishima,1994; Hirai et al.,2001b) have demonstrated that the intestinal lymph trunks drain into a group of paraaortic nodes on the immediately inferior side of the left renal vein [No. 16b1 according to the Japanese Research Society for Gastric Cancer (1995)]. However, Murakami and Taniguchi (2004) provided an illustration showing a thick drainage vessel running from the hepatoduodenal ligament to node 16b1 along the anterior surface of the vena cava. These vessels in adults seem to correspond with the fetal posterior drainage routes. In fetuses as well as adults, the thoracic duct and its thick tributaries ran along the posterior aspect of the aorta and vena cava. Thus, along most of the course, they were located away from the peritoneum. However, we hypothesize that a specific portion of the peritoneum produces some kind of growth factor, and that abdominal lymphatic vessels bud from the thoracic duct at sites in which a specific area of the peritoneum or mesentery is located close to the great vessels (and the thoracic duct).

Other than the aforementioned hypothetical induction by the mesenteric trunk, however, the development of the paraaortic, paracaval, and pelvic LFs seemed to follow the simple rule that “LFs develop along the major drainage vessels.” Thick arteries and/or veins did not appear to be required for lymphatic development because most of the pelvic LFs did not accompany arteries or veins. In contrast to the upper abdomen, the peritoneum surrounding the rectovaginal and rectovesical pouches seemed to have little or no ability to accelerate the development of LFs. The large obturator LFs were located along the major route from the lower extremities, via the femoral canal and into the common iliac LFs. This observation is not consistent with adult morphology because the major route from the lower extremities does not run along the obturator nerve but along the external iliac vein (Haagensen,1972). Does the major lymphatic route “switch” from the obturator nerve to the iliac veins? Although the nerve and the LFs were not mutually interdigitated (indeed, they were clearly separated), we hypothesize that, instead of the lymphatic course switching, the topographical relation among the obturator nerve, and femoral canal alters drastically at stages later than 30 weeks, as well as during the postnatal period: they are included in a single horizontal section of fetuses, but not in adults. In this context, we reiterate that the upper abdominal LFs were not distributed along the arteries and veins, but along the peritoneum, in specific mesenteries. Consequently, topographical changes in the peritoneum or mesenteries during the later stages of gestation are likely to cause significant repositioning of LFs.

LITERATURE CITED

  1. Top of page
  2. Abstract
  3. MATERIALS AND METHODS
  4. RESULTS
  5. DISCUSSION
  6. LITERATURE CITED
  • Cho BH, Kimura W, Song CH, Fujimiya M, Murakami G. 2009. An investigation of the embryologic development of the fascia used as the basis for pancreaticoduodenal mobilization. J Hepatobiliary Pancreat Surg 16: 824831.
  • Deki H, Sato T. 1988. An anatomical study of the peripancreatic lymphatics. Surg Radiol Anat 10: 121135.
  • Fritsch H. 1993. Development and organization of the pelvic connective tissue in the human fetus. Ann Anat 175: 531539.
  • Gabella G. 1995. Lymphatic system. In: Williams PL, editor. Gray's Anatomy, Chapter 10. London: Churchill Livingstone. p 16051628.
  • Gerecht-Nir S, Osenberg S, Nevo O, Ziskind A, Coleman R, Itskovitz-Eldor J. 2004. Vascular development in early human embryos and in teratomas derived from human embryonic stem cells. Biol Reprod 71: 20292036.
  • Haagensen CD. 1972. The lower extremity. In: Haagensen CD, Feind CR, Herter FP, Slanetz CA, Weinberg JA, editors. The Lymphatics in Cancer, Chapter 10. Philadelphia: Saunders. p 459488.
  • Hayashi S, Murakami G, Ohtsuka A, Itoh M, Nakano T, Fukuzawa Y. 2008. Connective tissue configuration in the human liver hilar region with special reference to the liver capsule and vascular sheath. J Hepatobiliary Pancreat Surg 15: 640647.
  • Hirai I, Murakami G, Kimura W, Nara T, Dodo Y. 2001a. Long descending lymphatic pathway from the pancreaticoduodenal region to the para-aortic nodes: Its laterality and topographical relationship with the celiac plexus. Okajimas Folia Anat Jpn 77: 189199.
  • Hirai I, Murakami G, Kimura W, Tanuma K, Ito H. 2001b. Origin of the thoracic duct and pancreaticoduodenal lymphatic pathways to the para-aortic lymph nodes. J Hepatobiliary Pancreat Surg 8: 441448.
  • Hiraki S. 1958. An anatomical study of the intestinal lymph trunks in human embryos (in Japanese). J Kumamoto Med Soc 32: 987996.
  • Honma Y, Araki T, Gianino S, Bruce A, Heuckeroth RO, Johnson EM Jr., Millbrandt J. 2002. Arterin is a vascular-derived neurotrophic factor for developing sympathetic neurons. Neuron 35: 267282.
  • Inoue Y. 1936. Über das Lymphgefässyetem des Magens, Duodenums, Pankreas und des Zwerchfells. Acta Anat Nippon 9: 35117.
  • Isogai S, Horiguchi M, Hitomi J. 2010. The para-aortic ridge plays a key role in the formation of the renal, adrenal and gonadal vascular systems. J Anat 216: 656670.
  • Ito M, Mishima Y. 1994. Lymphatic drainage of the gallbladder. J Hepatobiliary Pancreat Surg 1: 302308.
  • Japanese Pancreas Society. 1996. Classification of pancreatic carcinoma. 1st ed. Tokyo: Kanehara. p 812.
  • Japanese Research Society for Gastric Cancer. 1995. Classification of pancreatic carcinoma. 1st ed. Tokyo: Kanehara. p 611.
  • Jeong YJ, Cho BH, Kinugasa Y, Song CH, Hirai I, Kimura W, Murakami G. 2009. Fetal topohistology of the mesocolon transversum with special reference to the fusion with other mesenteries and fasciae. Clin Anat 22: 716729.
  • Jin ZW, Nakamura T, Yu HC, Kimura W, Murakami G, Cho BH. 2010. Fetal anatomy of peripheral lymphatic vessels: A D2-40 immunohistochemical study using an 18-week human fetus (CRL 155 mm). J Anat 216: 671682.
  • Kanagasuntheram R. 1960. Some observations on the development of the human duodenum. J Anat 94: 231240.
  • Karkkainen MJ, Haaiko P, Sainio K, Partanen J, Taipale J, Petrova TV, Alitalo K. 2003. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 5: 7480.
  • Karpanen T, Wirzenius M, Mäkinen T, Veikkola T, Haisma HJ, Achen MG, Alitalo K. 2006. Lymphangiogenic growth factor responsiveness is modulated by postnatal lymphatic vessel maturation. Am J Pathol 169: 708718.
  • Kinugasa Y, Niikura H, Murakami G, Suzuki D, Saito S, Tatsumi H, Ishii M. 2008. Development of the human hypogastirc nerve sheath with special reference to the topohistology between the nerve sheath and other prevertebral fascial structures. Clin Anat 21: 558567.
  • Matsubara A, Murakami G, Niikura H, Kinugasa Y, Fujimiya M, Usui T. 2009. Development of the human retroperitoneal fasciae. Cells Tissues Organs 190: 286296.
  • Michels NA. 1955. Blood supply and anatomy of the upper abdominal organs. Philadelphia: Lippincott.
  • Murakami G, Taniguchi I. 2004. Histological heterogeneity and suggested intranodal shunt flow in human aged lymph nodes. Ann Surg Oncol 11: 279284.
  • Niikura H, Jin ZW, Cho BH, Murakami G, Yaegashi N, Lee JK, Li CA. 2010. Human fetal anatomy of the coccygeal attachments of the levator ani muscle. Clin Anat 23: 566574.
  • Niikura H, Okamoto S, Nagase S, Takano T, Murakami G, Tatsumi H, Yaegashi N. 2008. Fetal development of the human gubernaculum with special reference to the fasciae and muscles around it. Clin Anat 21: 547557.
  • Sabin FR. 1909. The lymphatic system in human embryos, with a consideration of the morphology of the system as a whole. Am J Anat 9: 4391.
  • Sabin FR. 1912. The development of the lymphatic system. In: Keubel F, Mall FP, editors. Manual of human embryology. Philadelphia: Lippincott. Vol. II: p 709745.
  • Scavelli C, Weber E, Aglianò M, Cirulli T, Nico B, Vacca A, Ribatti D. 2004. Lymphatics at the crossroads of angiogenesis and lymphangiogenesis. J Anat 204: 433449.
  • Solvason N, Kearney JF. 1992. The human fetal omentum: A site for B cell generation. J Exp Med 175: 397404.
  • van der Putte SC, van Limborgh J. 1980. The embryonic development of the main lymphatics in man. Acta Morphol Neerl Scand 18: 323335.
  • Yajin S, Murakami G, Takeuchi H, Hasegawa T, Kitano H. 2009. The normal configuration and interindividual differences in intramural lymphatic vessels of the esophagus. J Thoracic Cardiovasc Surg 137: 10291037.
  • Yamada K, Ohyama S, Ohta K, Matsubara T, Yamaguchi T, Muto T. 2003. Lymph node dissection of the paraaortic area in gastric cancer operations around the aortic hiatus: Views during surgery and cadaveric dissection. Jpn J Gastroenterol Surg 36: 443450.
  • Yonemura Y, Endou Y, Tabachi K, Kawamura T, Yun HY, Kameya T, Miura M. 2006. Evaluation of lymphatic invasion in primary gastric cancer by a new antibody D2-40. Hum Pathol 37: 11931199.
  • Yu HC, Cho BH, Kim HT, Kimura W, Fujimiya M, Murakami G. 2010. Fetal topographical anatomy of the human pancreatic head and duodenum with special reference to courses of the pancreaticoduodenal arteries. Yonsei Med J 51: 398406.