SEARCH

SEARCH BY CITATION

LITERATURE CITED

  • Ahmed M, Wong EY, Sun J, Xu J, Wang F, Xu PX. 2012. Eya1-Six1 interaction is sufficient to induce hair cell fate in the cochlea by activating Atoh1 expression in cooperation with Sox2. Dev Cell 22: 377390.
  • Alarcon P, Rodriguez-Seguel E, Fernandez-Gonzalez A, Rubio R, Gomez-Skarmeta JL. 2008. A dual requirement for Iroquois genes during Xenopus kidney development. Development 135: 31973207.
  • Andreas W. 2011. The molecular origins of evolutionary innovations. Trends Genet 27: 397410.
  • Ayers H. 1890. The ear of man: its past, present and future. Biological lectures delivered at the Marine Biological Laboratory of Woods Hole. Gin and Company, Boston MA.
  • Ayers H. 1892. Vertebrate cephalogensis. J Morphol 6: 1360.
  • Baker CV, Bronner-Fraser M. 2001. Vertebrate cranial placodes I. Embryonic induction. Dev Biol 232: 161.
  • Baker CVH, O'Neill P, McCole RB. 2008. Lateral line, otic and epibranchial placodes: developmental and evolutionary links? J Exp Zool B Mol Dev Evol 310B: 370383.
  • Begbie J, Graham A. 2001. The ectodermal placodes: a dysfunctional family. Philos Trans R Soc Lond B Biol Sci 356: 16551660.
  • Bell D, Streit A, Gorospe I, Varela-Nieto I, Alsina B, Giraldez F. 2008. Spatial and temporal segregation of auditory and vestibular neurons in the otic placode. Dev Biol 322: 109120.
  • Ben-Arie N, Hassan BA, Bermingham NA, Malicki DM, Armstrong D, Matzuk M, Bellen HJ, Zoghbi HY. 2000. Functional conservation of atonal and Math1 in the CNS and PNS. Development 127: 10391048.
  • Bermingham NA, Hassan BA, Price SD, Vollrath MA, Ben-Arie N, Eatock RA, Bellen HJ, Lysakowski A, Zoghbi HY. 1999. Math1: an essential gene for the generation of inner ear hair cells. Science 284: 18371841.
  • Bertrand N, Castro DS, Guillemot F. 2002. Proneural genes and the specification of neural cell types. Nat Rev Neurosci 3: 517530.
  • Bouchard M, de Caprona D, Busslinger M, Xu P, Fritzsch B. 2010. Pax2 and Pax8 cooperate in mouse inner ear morphogenesis and innervation. BMC Dev Biol 10: 89.
  • Braun CB, Northcutt RG. 1997. The lateral line system of hagfishes (Craniata: Myxinoidea). Acta Zool 3: 247268.
  • Budelmann BU. 1992. Hearing in nonarthropod invertebrates. In: Popper AN, editor. The evolutionary biology of hearing. New York: Springer-Verlag. p 141156.
  • Bullock TH, Heiligenberg W. 1986. Electroreception. New York: Wiley.
  • Burighel P, Caicci F, Manni L. 2011. Hair cells in non-vertebrate models: lower chordates and molluscs. Hear Res 273: 1424.
  • Burighel P, Caicci F, Zaniolo G, Gasparini F, Degasperi V, Manni L. 2008. Does hair cell differentiation predate the vertebrate appearance? Brain Res Bull 75: 331334.
  • Caldwell JC, Eberl DF. 2002. Towards a molecular understanding of Drosophila hearing. J Neurobiol 53: 172189.
  • Cambronero F, Puelles L. 2000. Rostrocaudal nuclear relationships in the avian medulla oblongata: a fate map with quail chick chimeras. J Comp Neurol 427: 522545.
  • Carroll SB. 2008. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134: 2536.
  • Chen P, Johnson JE, Zoghbi HY, Segil N. 2002. The role of Math1 in inner ear development: uncoupling the establishment of the sensory primordium from hair cell fate determination. Development 129: 24952505.
  • Chitnis AB, Nogare DD, Matsuda M. 2011. Building the posterior lateral line system in zebrafish. Dev Neurobiol.
  • Coffin A, Kelley MW, Manley GA, Popper AN. 2004. Evolution of sensory hair cells. In: Manley GA, Popper AN, Fay RR, editors. Evolution oof the Vertebrate Auditory System. New York: Springer-Verlag.
  • Cole LK, Le Roux I, Nunes F, Laufer E, Lewis J, Wu DK. 2000. Sensory organ generation in the chicken inner ear: contributions of bone morphogenetic protein 4, serrate1, and lunatic fringe. J Comp Neurol 424: 509520.
  • Cramer KS, Fraser SE, Rubel EW. 2000. Embryonic origins of auditory brain-stem nuclei in the chick hindbrain. Dev Biol 224: 138151.
  • Davidson EH. 2006. The regulatory genome: gene regulatory networks in development and evolution. Burlington, MA: Academic Press.
  • Davidson EH, Erwin DH. 2006. Gene regulatory networks and the evolution of animal body plans. Science 311: 796800.
  • Du H, Chalfie M. 2001. Genes regulating touch cell development in Caenorhabditis elegans. Genetics 158: 197207.
  • Duncan JS, Fritzsch B. 2012. Transforming the vestibular system one molecule at a time: the molecular and developmental basis of vertebrate auditory evolution. Adv Exp Med Biol 739: 173186.
  • Duncan JS, Lim KC, Engel JD, Fritzsch B. 2011. Limited inner ear morphogenesis and neurosensory development are possible in the absence of GATA3. Int J Dev Biol 55: 297303.
  • Eberl DF, Boekhoff-Falk G. 2007. Development of Johnston's organ in Drosophila. Int J Dev Biol 51: 679687.
  • Farago AF, Awatramani RB, Dymecki SM. 2006. Assembly of the brainstem cochlear nuclear complex is revealed by intersectional and subtractive genetic fate maps. Neuron 50: 205218.
  • Farinas I, Jones KR, Tessarollo L, Vigers AJ, Huang E, Kirstein M, de Caprona DC, Coppola V, Backus C, Reichardt LF, Fritzsch B. 2001. Spatial shaping of cochlear innervation by temporally regulated neurotrophin expression. J Neurosci 21: 61706180.
  • Fritzsch B. 1981. The pattern of lateral-line afferents in urodeles. A horseradish- peroxidase study. Cell Tissue Res 218: 581594.
  • Fritzsch B. 1987. Inner-ear of the coelacanth fish latimeria has tetrapod affinities. Nature 327: 153154.
  • Fritzsch B. 1992. The Water-to-land transition: Evolution of the tetrapod basilar papilla, middle ear, and auditory nuclei. In: Webster DB, Fay RR, Popper AN, editors. The evolutionary biology of hearing. New York: Springer. p 351376.
  • Fritzsch B. 1999. Hearing in two worlds: theoretical and realistic adaptive changes of the aquatic and terrectrial ear for sound reception. In: Fay RR, Popper AN, editors. Comparative hearing: fish and amphibians. New York: Springer-Verlag. p 1542.
  • Fritzsch B. 2003. Development of inner ear afferent connections: forming primary neurons and connecting them to the developing sensory epithelia. Brain Res Bull 60: 423433.
  • Fritzsch B, Barald K, Lomax M. 1998. Early embryology of the vertebrate ear. In: Rubel EW, Popper AN, Fay RR, editors. Development of the Auditory System. New York: Springer-Verlag. p 80145.
  • Fritzsch B, Beisel KW. 2001. Evolution and development of the vertebrate ear. Brain Res Bull 55: 711721.
  • Fritzsch B, Beisel KW. 2003. Molecular conservation and novelties in vertebrate ear development. Curr Top Dev Biol 57: 144.
  • Fritzsch B, Beisel KW. 2004. Keeping sensory cells and evolving neurons to connect them to the brain: molecular conservation and novelties in vertebrate ear development. Brain Behav Evol 64: 182197.
  • Fritzsch B, Beisel KW, Bermingham NA. 2000. Developmental evolutionary biology of the vertebrate ear: conserving mechanoelectric transduction and developmental pathways in diverging morphologies. Neuroreport 11: R3544.
  • Fritzsch B, Beisel KW, Jones K, Farinas I, Maklad A, Lee J, Reichardt LF. 2002. Development and evolution of inner ear sensory epithelia and their innervation. J Neurobiol 53: 143156.
  • Fritzsch B, Beisel KW, Pauley S, Soukup G. 2007. Molecular evolution of the vertebrate mechanosensory cell and ear. Int J Dev Biol 51: 663678.
  • Fritzsch B, Eberl DF, Beisel KW. 2010. The role of bHLH genes in ear development and evolution: revisiting a 10-year-old hypothesis. Cell Mol Life Sci 67: 30893099.
  • Fritzsch B, Gregory D, Rosa-Molinar E. 2005a. The development of the hindbrain afferent projections in the axolotl: evidence for timing as a specific mechanism of afferent fiber sorting. Zoology (Jena) 108: 297306.
  • Fritzsch B, Jahan I, Pan N, Kersigo J, Duncan J, Kopecky B. 2011. Dissecting the molecular basis of organ of Corti development: where are we now? Hear Res 276: 1626.
  • Fritzsch B, Matei VA, Nichols DH, Bermingham N, Jones K, Beisel KW, Wang VY. 2005b. Atoh1 null mice show directed afferent fiber growth to undifferentiated ear sensory epithelia followed by incomplete fiber retention. Developmental dynamics: an official publication of the American Association of Anatomists 233: 570583.
  • Fritzsch B, Pauley S, Beisel KW. 2006a. Cells, molecules and morphogenesis: the making of the vertebrate ear. Brain Res 1091: 151171.
  • Fritzsch B, Pauley S, Feng F, Matei V, Nichols DH. 2006b. The evolution of the vertebrate auditory system: transformations of vestibular mechanosensory cells for sound processing is combined with newly generated central processing neurons. Int J Comp Psychol 19: 124.
  • Fritzsch B, Wake MH. 1988a. The inner-ear of gymnophione amphibians and its nerve supply-a comparative study of regressive events in a complex sensory system (amphibia, gymnophiona). Zoomorphology 108: 201217.
  • Fritzsch B, Wake MH. 1988b. The inner ear of gymnophione amphibians and its nerve supply: a comparative study of regressive events in a complex sensory system. Zoomorphol 108: 210217.
  • Garces A, Thor S. 2006. Specification of Drosophila aCC motoneuron identity by a genetic cascade involving even-skipped, grain and zfh1. Development 133: 14451455.
  • Garcia-Bellido A, de Celis JF. 2009. The complex tale of the achaete-scute complex: a paradigmatic case in the analysis of gene organization and function during development. Genetics 182: 631639.
  • Grothe B, Carr EC, Casseday JH, Fritzsch B, Köppl C. 2004 The evolution of central pathways and their neural processing patterns. In: Manley GA, Popper AN, Fay RR, editors. Evolution of the vertebrate auditory system. New York: Spinger. p 289359.
  • Groves AK, Bronner-Fraser M. 2000. Competence, specification and commitment in otic placode induction. Development 127: 34893499.
  • Groves AK, Fekete DM. 2012. Shaping sound in space: the regulation of inner ear patterning. Development 139: 245257.
  • Hassan BA, Bellen HJ. 2000. Doing the MATH: Is the mouse a good model for fly development? Genes Dev 14: 18521865.
  • Hasson T, Gillespie PG, Garcia JA, MacDonald RB, Zhao Y, Yee AG, Mooseker MS, Corey DP. 1997. Unconventional myosins in inner-ear sensory epithelia. J Cell Biol 137: 12871307.
  • Haugas M, Lilleväli K, Salminen M. 2012. Defects in sensory organ morphogenesis and generation of cochlear hair cells in Gata3-deficient mouse embryos. Hear Res 283: 151161.
  • Herrick CJ. 1897. The cranial nerve components of teleosts. Anat Anz 13: 425431.
  • Hertzano R, Montcouquiol M, Rashi-Elkeles S, Elkon R, Yucel R, Frankel WN, Rechavi G, Moroy T, Friedman TB, Kelley MW, Avraham KB. 2004. Transcription profiling of inner ears from Pou4f3(ddl/ddl) identifies Gfi1 as a target of the Pou4f3 deafness gene. Hum Mol Genet 13: 21432153.
  • Holland LZ. 2005. Non-neural ectoderm is really neural: evolution of developmental patterning mechanisms in the non-neural ectoderm of chordates and the problem of sensory cell homologies. J Exp Zool B Mol Dev Evol 304: 304323.
  • Holland ND. 2003. Early central nervous system evolution: an era of skin brains? Nat Rev Neurosci 4: 617627.
  • Huh SH, Jones J, Warchol ME, Ornitz DM. 2012. Differentiation of the lateral compartment of the cochlea requires a temporally restricted FGF20 signal. PLoS Biol 10: e1001231.
  • Jacques BE, Montcouquiol ME, Layman EM, Lewandoski M, Kelley MW. 2007. Fgf8 induces pillar cell fate and regulates cellular patterning in the mammalian cochlea. Development 134: 30213029.
  • Jafar-Nejad H, Bellen HJ. 2004. Gfi/Pag-3/senseless zinc finger proteins: a unifying theme? Mol Cell Biol 24: 88038812.
  • Jahan I, Kersigo J, Pan N, Fritzsch B. 2010a. Neurod1 regulates survival and formation of connections in mouse ear and brain. Cell Tissue Res 341: 95110.
  • Jahan I, Pan N, Kersigo J, Fritzsch B. 2010b. Neurod1 suppresses hair cell differentiation in ear ganglia and regulates hair cell subtype development in the cochlea. PLoS One 5: e11661.
  • Janvier P. 1996. Early vertebrates. New York: Oxford University Press.
  • Jarman AP, Ahmed I. 1998. The specificity of proneural genes in determining Drosophila sense organ identity. Mech Dev 76: 117125.
  • Jorgensen JM. 1989. Evolution of octavolateralis sensory cells. In: Coombs S, Goerner P, Muenz H, editors. The Mechanosensory lateral line. Neurobiology and evolution. New York: Springer Verlag. p 99115.
  • Kageyama R, Ohtsuka T, Hatakeyama J, Ohsawa R. 2005. Roles of bHLH genes in neural stem cell differentiation. Exp Cell Res 306: 343348.
  • Karis A, Pata I, van Doorninck JH, Grosveld F, de Zeeuw CI, de Caprona D, Fritzsch B. 2001. Transcription factor GATA-3 alters pathway selection of olivocochlear neurons and affects morphogenesis of the ear. J Comp Neurol 429: 615630.
  • Kelley MW. 2006. Regulation of cell fate in the sensory epithelia of the inner ear. Nat Rev Neurosci 7: 837849.
  • Kiernan AE, Pelling AL, Leung KK, Tang AS, Bell DM, Tease C, Lovell-Badge R, Steel KP, Cheah KS. 2005. Sox2 is required for sensory organ development in the mammalian inner ear. Nature 434: 10311035.
  • Kim WY, Fritzsch B, Serls A, Bakel LA, Huang EJ, Reichardt LF, Barth DS, Lee JE. 2001. NeuroD-null mice are deaf due to a severe loss of the inner ear sensory neurons during development. Development 128: 417426.
  • Kohlhase J, Wischermann A, Reichenbach H, Froster U, Engel W. 1998. Mutations in the SALL1 putative transcription factor gene cause Townes-Brocks syndrome. Nat Genet 18: 8183.
  • Kopecky B, Santi P, Johnson S, Schmitz H, Fritzsch B. 2011. Conditional deletion of N-Myc disrupts neurosensory and non-sensory development of the ear. Dev Dyn 240: 13731390.
  • Kozmik Z, Daube M, Frei E, Norman B, Kos L, Dishaw LJ, Noll M, Piatigorsky J. 2003. Role of pax genes in eye evolution. A Cnidarian PaxB gene uniting Pax2 and Pax6 functions. Dev Cell 5: 773785.
  • Ladher RK, Wright TJ, Moon AM, Mansour SL, Schoenwolf GC. 2005. FGF8 initiates inner ear induction in chick and mouse. Genes Dev 19: 603613.
  • Larsell O. 1967. The comparative anatomy and histology of the cerebellum from myxinoids through birds. Minneapolis: University of Minnesota Press.
  • Li H, Liu H, Corrales CE, Mutai H, Heller S. 2004. Correlation of Pax-2 expression with cell proliferation in the developing chicken inner ear. J Neurobiol 60: 6170.
  • Libby RT, Steel KP. 2000. The roles of unconventional myosins in hearing and deafness. Essays Biochem 35: 159174.
  • Long JA. 1995. The rise of fishes: 500 million years of evolution. Baltimore: Johns Hopkins University Press.
  • Lu CC, Appler JM, Houseman EA, Goodrich LV. 2011. Developmental profiling of spiral ganglion neurons reveals insights into auditory circuit assembly. J Neurosci 31: 1090310918.
  • Ma Q, Anderson DJ, Fritzsch B. 2000. Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation. J Assoc Res Otolaryngol 1: 129143.
  • Mackie GO, Singla CL. 2003. The capsular organ of Chelyosoma productum (Ascidiacea: Corellidae): a new tunicate hydrodynamic sense organ. Brain Behav Evol 61: 4558.
  • Maler L, Finger T, Karten HJ. 1974. Differential projections of ordinary lateral line receptors and electroreceptors in the gymnotid fish, Apteronotus (Sternarchus) albifrons. J Comp Neurol 158: 363382.
  • Maler L, Karten HJ, Bennett MV. 1973. The central connections of the anterior lateral line nerve of Gnathonemus petersii. J Comp Neurol 151: 6784.
  • Manley GA. 2010. The origin and evolution of high-frequency hearing in (most) mammals. Hear Res 270: 23.
  • Mansour SL, Schoenwolf GC. 2005. Morphogenesis of the inner ear. In: Kelley MW, Wu DK, Popper AN, Fay RR, editors. Development of the inner ear. New York: Springer.
  • Maricich SM, Xia A, Mathes EL, Wang VY, Oghalai JS, Fritzsch B, Zoghbi HY. 2009. Atoh1-lineal neurons are required for hearing and for the survival of neurons in the spiral ganglion and brainstem accessory auditory nuclei. J Neurosci 29: 1112311133.
  • Marin F, Puelles L. 1995. Morphological fate of rhombomeres in quail/chick chimeras: a segmental analysis of hindbrain nuclei. Eur J Neurosci 7: 17141738.
  • Markl H. 1974. The perception of gravity and of angular acceleration in invertebrates. In: Kornhuber HH, editor. Handbook of sensory physiology. Berlin: Springer Verlag. p 1774.
  • Mayser P. 1882. Vergleichend anatomische studien uber das Gehirn der Knochenfische mit besonderer Berucksichtigung der cyprinoiden. Z Wiss Zool 36: 259364.
  • McKimmie C, Woerfel G, Russell S. 2005. Conserved genomic organisation of Group B Sox genes in insects. BMC Genet 6: 26.
  • Meulemans D, Bronner-Fraser M. 2007. The amphioxus SoxB family: implications for the evolution of vertebrate placodes. Int J Biol Sci 3: 356364.
  • Millimaki BB, Sweet EM, Dhason MS, Riley BB. 2007. Zebrafish atoh1 genes: classic proneural activity in the inner ear and regulation by Fgf and Notch. Development 134: 295305.
  • Mitani S, Du H, Hall DH, Driscoll M, Chalfie M. 1993. Combinatorial control of touch receptor neuron expression in Caenorhabditis elegans. Development 119: 773783.
  • Morsli H, Choo D, Ryan A, Johnson R, Wu DK. 1998. Development of the mouse inner ear and origin of its sensory organs. J Neurosci 18: 33273335.
  • Nerrevang A, Wingstrand KG. 1970. On the occurrence and structure of choanocyte-like cells in some echinoderms. Acta Zool 51: 249270.
  • Nichols DH, Pauley S, Jahan I, Beisel KW, Millen KJ, Fritzsch B. 2008. Lmx1a is required for segregation of sensory epithelia and normal ear histogenesis and morphogenesis. Cell Tissue Res 334: 339358.
  • Northcutt RG. 1979. Primary projections of VIII nerve afferents in a teleost, gillichthys-mirabilis. Anat Rec 193: 638638.
  • Northcutt RG. 1980. Central auditory pathways in anamniotic vertebrates. In: Fay RR, Popper AN, editors. Comparative studies of hearing in vertebrates. New York: Springer-Verlag. p 79118.
  • Northcutt RG. 1981. Audition and the central nervous system of fishes. In: Tavolga WN, Popper AN, Fay RR, editors. Hearing and sound communication in fishes. New York: Springer-Verlag. p 331355.
  • Northcutt RG. 2005. The new head hypothesis revisited. J Exp Zool B Mol Dev Evol 304: 274297.
  • Northcutt RG, Brandle K, Fritzsch B. 1995. Electroreceptors and mechanosensory lateral line organs arise from single placodes in axolotls. Dev Biol 168: 358373.
  • O'Brien EK, Degnan BM. 2002. Developmental expression of a class IV POU gene in the gastropod Haliotis asinina supports a conserved role in sensory cell development in bilaterians. Dev Genes Evol 212: 394398.
  • Ohyama T, Basch ML, Mishina Y, Lyons KM, Segil N, Groves AK. 2010. BMP signaling is necessary for patterning the sensory and nonsensory regions of the developing mammalian cochlea. J Neurosci 30: 1504415051.
  • Okoruwa OE, Weston MD, Sanjeevi DC, Millemon AR, Fritzsch B, Hallworth R, Beisel KW. 2008. Evolutionary insights into the unique electromotility motor of mammalian outer hair cells. Evol Dev 10: 300315.
  • Padanad MS, Riley BB. 2011. Pax2/8 proteins coordinate sequential induction of otic and epibranchial placodes through differential regulation of foxi1, sox3 and fgf24. Dev Biol 351: 9098.
  • Pan N, Jahan I, Kersigo J, Duncan JS, Kopecky B, Fritzsch B. 2012. A Novel Atoh1 “Self-Terminating” mouse model reveals the necessity of proper Atoh1 level and duration for hair cell differentiation and viability. PLoS One 7: e30358.
  • Pan N, Jahan I, Kersigo J, Kopecky B, Santi P, Johnson S, Schmitz H, Fritzsch B. 2011. Conditional deletion of Atoh1 using Pax2-Cre results in viable mice without differentiated cochlear hair cells that have lost most of the organ of Corti. Hear Res 275: 6680.
  • Pauley S, Kopecky B, Beisel K, Soukup G, Fritzsch B. 2008. Stem cells and molecular strategies to restore hearing. Panminerva Med 50: 4153.
  • Pauley S, Lai E, Fritzsch B. 2006. Foxg1 is required for morphogenesis and histogenesis of the mammalian inner ear. Dev Dyn 235: 24702482.
  • Pauley S, Wright TJ, Pirvola U, Ornitz D, Beisel K, Fritzsch B. 2003. Expression and function of FGF10 in mammalian inner ear development. Dev Dyn 227: 203215.
  • Pearson AA. 1936. THe acoustico-lateral centers and the cerebellum, with fiber connections, of fishes. J Comp Neurol 65: 201294.
  • Pirvola U, Ylikoski J, Trokovic R, Hebert JM, McConnell SK, Partanen J. 2002. FGFR1 is required for the development of the auditory sensory epithelium. Neuron 35: 671680.
  • Portman DS, Emmons SW. 2000. The basic helix-loop-helix transcription factors LIN-32 and HLH-2 function together in multiple steps of a C. elegans neuronal sublineage. Development 127: 54155426.
  • Qian D, Jones C, Rzadzinska A, Mark S, Zhang X, Steel KP, Dai X, Chen P. 2007. Wnt5a functions in planar cell polarity regulation in mice. Dev Biol 306: 121133.
  • Raft S, Koundakjian EJ, Quinones H, Jayasena CS, Goodrich LV, Johnson JE, Segil N, Groves AK. 2007. Cross-regulation of Ngn1 and Math1 coordinates the production of neurons and sensory hair cells during inner ear development. Development 134: 44054415.
  • Satoh T, Fekete DM. 2005. Clonal analysis of the relationships between mechanosensory cells and the neurons that innervate them in the chicken ear. Development 132: 16871697.
  • Schlosser G. 2010. Making senses development of vertebrate cranial placodes. Int Rev Cell Mol Biol 283: 129234.
  • Schwander M, Kachar B, Müller U. 2010. The cell biology of hearing. J Cell Biol 190: 920.
  • Seipel K, Yanze N, Schmid V. 2004. Developmental and evolutionary aspects of the basic helix-loop-helix transcription factors Atonal-like 1 and Achaete-scute homolog 2 in the jellyfish. Dev Biol 269: 331345.
  • Shute CCD, Bellairs AdA. 1953. The cochlear apparatus of Geokonidae and Pygopodidae and its bearing on the affinities of these groups of lizards. Proc Zool Soc Lond 123: 695710.
  • Stensio EA. 1927. The Devonian and Downtonian vertebrates of Sitsbergen. 1. Family Cephalaspidae. Skrifter om Svalbard og Ishavet: 1391.
  • Stevens CB, Davies AL, Battista S, Lewis JH, Fekete DM. 2003. Forced activation of Wnt signaling alters morphogenesis and sensory organ identity in the chicken inner ear. Dev Biol 261: 149164.
  • Streit A. 2001. Origin of the vertebrate inner ear: evolution and induction of the otic placode. J Anat 199: 99103.
  • Sürmeli G, Akay T, Ippolito Gregory C, Tucker Philip W, Jessell Thomas M. 2011. Patterns of spinal sensory-motor connectivity prescribed by a dorsoventral positional template. Cell 147: 653665.
  • Syntichaki P, Tavernarakis N. 2004. Genetic models of mechanotransduction: the nematode Caenorhabditis elegans. Physiol Rev 84: 10971153.
  • Tena JJ, Alonso ME, de la Calle-Mustienes E, Splinter E, de Laat W, Manzanares M, Gomez-Skarmeta JL. 2011. An evolutionarily conserved three-dimensional structure in the vertebrate Irx clusters facilitates enhancer sharing and coregulation. Nat Commun 2: 310.
  • Tessarollo L, Coppola V, Fritzsch B. 2004. NT-3 replacement with brain-derived neurotrophic factor redirects vestibular nerve fibers to the cochlea. J Neurosci 24: 25752584.
  • Todi SV, Franke JD, Kiehart DP, Eberl DF. 2005. Myosin VIIA defects, which underlie the Usher 1B syndrome in humans, lead to deafness in Drosophila. Curr Biol 15: 862868.
  • Todi SV, Sharma Y, Eberl DF. 2004. Anatomical and molecular design of the Drosophila antenna as a flagellar auditory organ. Microsc Res Tech 63: 388399.
  • Todi SV, Sivan-Loukianova E, Jacobs JS, Kiehart DP, Eberl DF. 2008. Myosin VIIA, important for human auditory function, is necessary for Drosophila auditory organ development. PLoS One 3: e2115.
  • Uchikawa M, Ishida Y, Takemoto T, Kamachi Y, Kondoh H. 2003. Functional analysis of chicken Sox2 enhancers highlights an array of diverse regulatory elements that are conserved in mammals. Dev Cell 4: 509519.
  • Van Bergeijk WA. 1966. Evolution of the sense of hearing in vertebrates. Am Zool 6: 371377.
  • van Bergeijk WA. 1967. The evolution of vertebrate hearing. In: Neff WD, editor. Contributions to sensory physiology. Berlin and New York: Springer-Verlag. p 149.
  • von Kuppfer C. 1895. Studien zur vergleichenden Entwicklungsgeschichte des Kopfes der Kranioten. Die Entwicklung der Kopfnerven von ammocoetes planeri: Munchen, Lehmann. p 180.
  • Wang VY, Hassan BA, Bellen HJ, Zoghbi HY. 2002. Drosophila atonal fully rescues the phenotype of Math1 null mice: New functions evolve in new cellular contexts. Curr Biol 12: 16111616.
  • Weber T, Göpfert MC, Winter H, Zimmermann U, Kohler H, Meier A, Hendrich O, Rohbock K, Robert D, Knipper M. 2003. Expression of prestin-homologous solute carrier (SLC26) in auditory organs of nonmammalian vertebrates and insects. Proc Natl Acad Sci USA 100: 76907695.
  • Wever EG. 1972. The evolution of vertebrate hearing. In: Neff WD, editor. The auditory system. Berlin: Springer Verlag.
  • Will U, Fritzsch B. 1988. The octavus nerve of apmphibians: patterns of afferents and efferents. In: Fritzsch B, Ryan M, Wilczynski W, Hetherington T, Walkowiak W, editors. The evolution of the amphibian auditory system. New York: Wiley. p 159184.
  • Wilson HV, Mattocks JE. 1897. THe lateral sensory anlage in the salmon. Anat Anz 13: 658660.
  • Xiang M, Maklad A, Pirvola U, Fritzsch B. 2003. Brn3c null mutant mice show long-term, incomplete retention of some afferent inner ear innervation. BMC Neurosci 4: 2.
  • Yang T, Kersigo J, Jahan I, Pan N, Fritzsch B. 2011. The molecular basis of making spiral ganglion neurons and connecting them to hair cells of the organ of Corti. Hear Res 278: 2133.
  • Zhao C, Emmons SW. 1995. A transcription factor controlling development of peripheral sense organs in C. elegans. Nature 373: 7478.