Material properties of the human cranial vault and zygoma

Authors

  • Jill Peterson,

    1. Department of Public Health, Baylor College of Dentistry, Texas A & M University System Health Science Center, Dallas, Texas
    Search for more papers by this author
  • Paul C. Dechow

    Corresponding author
    1. Department of Biomedical Sciences, Baylor College of Dentistry, Texas A & M University System Health Science Center, Dallas, Texas
    • Department of Biomedical Sciences, Baylor College of Dentistry, 3302 Gaston Ave., Dallas, TX 75246
    Search for more papers by this author
    • Fax: (214) 828-8951


Abstract

The material properties of cortical bone from the diaphyses of long bones (e.g., the femur and tibia) vary by direction, such that bone is stiffer and stronger along its long axis. This configuration improves the abilities of these structures to resist axial compressive loads coupled with bending. As in long bones, cortical bone from the cranial vault is subject to mechanical loads from various orofacial functions and the contraction of attached muscles. However, experimental studies suggest that the resulting bone strains are at least an order of magnitude smaller than those found in the midshafts of the femur or tibia. The characteristics of the three-dimensional elastic properties of cortical bone are largely unexplored in regions of low bone strain, including the cranial vault, in which little is known regarding cortical structure and function. In the present study we examined variations in the cortical microstructure and material properties of the bone of the human cranial vault, including the parietal, frontal, temporal, and occipital bones. A facial bone, the zygoma, was also included to contrast the properties of the cranial vault with another craniofacial intramembranous bone that experiences larger strains. Cortical specimens from the outer cortical plate of the cranial vault were removed from 15 frozen human crania. We measured cortical thicknesses and densities, and determined the primary direction of stiffness within the bone specimens prior to ultrasonic testing to determine their elastic properties. There were statistically significant differences in elastic properties between bones and, in some cases, sites within bones, which for most variables were clustered by bone or region. In striking contrast to this pattern, elastic moduli in the direction of primary stiffness were larger in cortical regions underlying muscle attachments than in regions without muscle attachments. Few sites in the cranial vault or zygoma showed a consistent orientation of the material axes among individuals, although specimens from many regions had directional differences similar to those in cortical bone from the mandible, femur, or tibia. Anat Rec Part A 274A:785–797, 2003. © 2003 Wiley-Liss, Inc.

Ancillary