SEARCH

SEARCH BY CITATION

Keywords:

  • medial coronoid process;
  • micro-CT;
  • trabecular structure;
  • dog

Abstract

This study describes the timing of development of the trabecular structure of the ulnar medial coronoid process (MCP) in the dog. The right MCPs of nine healthy golden retrievers, aged 4 to 24 weeks, without signs of secondary joint disease were dissected and scanned with microcomputed tomography (micro-CT) at a voxel size of 34 μm to determine histomorphometric parameters. Bone volume fraction and mean trabecular separation show a reciprocal pattern in time, reflecting an initial high bone density (and low trabecular separation), and then a sharp drop in density at 8–10 weeks, followed by a gradual increase to high values at 24 weeks. With a similar bone volume fraction as in young bone, the older bone shows thicker trabeculae and a more plate-like structure. This is reflected in the much smaller number of trabeculae and the lower surface/volume ratio at higher age. An anisotropic structure of the trabeculae with an orientation in the direction of the proximodistal axis of the ulna is already present at 6 weeks after birth. This primary alignment was perpendicular to the humeroulnar articular surface, matching the direction of the compressive forces applied to the MCP by the humeral trochlea. The secondary alignment appeared at 13 weeks after birth and was directed along the craniocaudal axis of the MCP, toward the attachment of the anular ligament. In comparison with data from long bones and vertebrae, the findings of a high bone volume fraction and a well-defined trabecular alignment at a very early age are remarkable. The high bone volume fraction is possibly a remnant of the fetal trabecular structure, as dogs are relatively immature at birth compared to other animals. Soon after the start of steady locomotion, the trabecular structure changes into a more mature-like structure. The early trabecular alignment is possibly a reflection of the early load-bearing function of the MCP in the elbow joint. Anat Rec Part A 278A:514–519, 2004. © 2004 Wiley-Liss, Inc.