SEARCH

SEARCH BY CITATION

Keywords:

  • surfactant;
  • SP-A;
  • SP-D;
  • collectins;
  • alveoli;
  • type II cells;
  • lamellar bodies;
  • stereology

Abstract

  1. Top of page
  2. Abstract
  3. MATERIALS AND METHODS
  4. RESULTS
  5. DISCUSSION
  6. Acknowledgements
  7. LITERATURE CITED

Alveolar epithelial type II cells synthesize and secrete surfactant. The surfactant-associated proteins A and D (SP-A and SP-D), members of the collectin protein family, participate in pulmonary immune defense, modulation of inflammation, and surfactant metabolism. Both proteins are known to have overlapping as well as distinct functions. The present study provides a design-based stereological analysis of adult mice deficient in both SP-A and SP-D (AD) with special emphasis on parameters characterizing alveolar architecture and surfactant-producing type II cells. Compared to wild-type, AD mice have fewer and larger alveoli, an increase in the number and size of type II cells, as well as more numerous and larger alveolar macrophages. More surfactant-storing lamellar bodies are seen in type II cells, leading to a threefold increase in the total volume of lamellar bodies per lung, but the mean volume of a single lamellar body remains constant. These results demonstrate that chronic deficiency of SP-A and SP-D in mice leads to parenchymal remodeling, type II cell hyperplasia and hypertrophy, and disturbed intracellular surfactant metabolism. The design-based stereological approach presented here provides a framework for the quantitative lung structure analysis in gene-manipulated mice as well as in human lung disease. © 2005 Wiley-Liss, Inc.

The alveolar epithelium is a mosaic of type I cells that build the ultrathin air-blood barrier and type II cells that synthesize and secrete surfactant. Surfactant is composed of lipids (∼ 90%) and proteins (∼ 10%) and maintains alveolar integrity by reducing the surface tension at the air-liquid interface. The surfactant proteins A (SP-A) and D (SP-D) are members of the collectin protein family, and they have comparable potential to interact with cells and microorganisms (Crouch and Wright, 2001; Hawgood and Poulain, 2001). The lung collectins, SP-A and SP-D, are part of the pulmonary innate immune system (Crouch and Wright, 2001; McCormack and Whitsett, 2002; Wu et al., 2003; Wright, 2004) and influence inflammatory processes (Chabot et al., 2003; Gardai et al., 2003). Within the alveolar lumen, SP-A is associated with tubular myelin, whereas SP-D exists mainly free in the hypophase (Wright, 1997; McCormack and Whitsett, 2002). The distribution in different intra-alveolar microdomains may possibly lead to distinct functions.

Gene-targeted mice lacking SP-A, SP-D, or both are vital, fertile, and free of infections when unchallenged (Korfhagen et al., 1996; Botas et al., 1998; Hawgood et al., 2002). SP-D single deficient mice show altered lung pathology consistent with emphysema, abnormalities of alveolar macrophages, as well as of type II cells and an increased alveolar surfactant pool size (Botas et al., 1998; Ikegami et al., 2000a; Wert et al., 2000). SP-A single deficient mice lack tubular myelin but have no obvious changes in surfactant metabolism under resting conditions (Korfhagen et al., 1996; Ikegami et al., 1997).

The development and first characterization of mice deficient in both SP-A and SP-D revealed progressive intra-alveolar accumulation of phospholipids and proteins. The initial description also demonstrated emphysema-like pathology (Hawgood et al., 2002). The present study extends these observations and provides a detailed design-based stereological analysis at the level of light and electron microscopy to characterize the phenotype of lung collectin-deficient mice. Recently established methods for the direct and unbiased estimation of the number and size of alveoli (Hyde et al., 2004; Ochs et al., 2004a) and of the number and size of type II cells as well as their surfactant-storing lamellar bodies (Ochs et al., 2004b) were chosen to provide new data on lung parenchymal architecture, on the morphology of alveolar type II cells and their lamellar bodies, as well as of alveolar macrophages in mice double deficient in SP-A and SP-D.

MATERIALS AND METHODS

  1. Top of page
  2. Abstract
  3. MATERIALS AND METHODS
  4. RESULTS
  5. DISCUSSION
  6. Acknowledgements
  7. LITERATURE CITED

Mutant Mice

The generation of the mice and the initial phenotype characterization were previously described in detail (Hawgood et al., 2002). Mice deficient in SP-A and SP-D were generated by sequential targeting of the closely linked genes in F1 B6/129Sv ES cells. All experiments described here were conducted on littermate mice of B6/129Sv:CD-1 mixed genetic background. Mice were housed in conventional cages and bedded with Paper Chip brand laboratory animal bedding manufactured (softer texture) by Sheppard Speciality Papers. Water was acidified, diet was Lab Diet 5053 Irradiated PicoLab Rodent Diet 20. The following pathogens were excluded by the Laboratory Animal Resource Center sentinel program: mouse hepatitis virus, Sendai virus, pneumonia virus of mice, mouse parvovirus, minute virus of mice, Theiler's murine encephalitis virus, and mycoplasma pulmonis. Study mice were wild-type for SP-A and SP-D (WT) or null for both genes (AD). Mice were genotyped by PCR using primers specific for the SP-A and SP-D alleles. Experiments were conducted on mice of 12 weeks of age, n = 5 per genotype. The reason for choosing five animals per group in a stereological study is that if a parameter is found to change in one direction in all five cases, then the probability that this is due to chance is P = (1/2)5 < 0.05, thus making the experiment conclusive (Cruz-Orive and Weibel, 1990). All experimental protocols were approved by the Institutional Animal Care and Use Committee.

Fixation, Sampling, Processing

Mice were euthanized by intraperitoneal injection of pentobarbital (200 mg/kg) prior to bilateral thoracotomy. After instillation fixation of 2% glutaraldehyde and 1% paraformaldehyde in 0.1 M phosphate buffer via the trachea at a pressure of 20 cm H2O, the total lung volume was estimated by fluid displacement according to Archimedes' principle (Scherle, 1970) followed by systematic, uniformly random tissue sampling and postfixation as earlier reported (Fehrenbach and Ochs, 1998). For light microscopy, lung slices were osmicated, bloc-stained, dehydrated, embedded in glycol methacrylate (Technovit 7100; Heraeus Kulzer, Wehrheim, Germany), and cut into 1 μm sections stained either with methylene blue or with orcein. The remaining lung slices were cut into blocks, osmicated, bloc-stained, dehydrated, embedded in LX 112 (Ladd Research Industries, Burlington, VT), and cut into 1 μm semithin sections stained with toluidine blue for light microscopy and 100 nm ultrathin sections stained with uranyl acetate and lead citrate for electron microscopy.

Stereological Analysis

The stereological methods applied are free of assumptions on the shape, size, orientation, or distribution of the structures investigated and therefore fulfill the criteria for design-based or unbiased stereology. Point and intersection counting (Weibel, 1979) estimated volume and surface densities, respectively. The physical disector (Sterio, 1984) was used to estimate numerical densities. Densities were multiplied by their respective reference volumes to obtain total values. The mean particle size was estimated by dividing the total volume of particles by their number. Furthermore, local stereological estimators, the planar rotator (Vedel Jensen and Gundersen, 1993) and the point sampled intercepts method (Gundersen and Jensen, 1985), were used to estimate the number-weighted mean volume and the volume-weighted mean volume of particles, respectively. The volume-weighted mean volume results from the number-weighted mean volume amplified by the coefficient of variation of the individual particle volumes and therefore contains information on both mean particle size and variability of size. For surface and size estimators, global isotropy was assumed. The contributions of the interindividual biological and the intraindividual methodological variations to the total observed coefficient of variation were analyzed to check if the stereological estimates were sufficiently precise.

For all outcome measures, four pairs of sections per lung were used. The light microscopic analysis was performed on an Axioskop light microscope (Zeiss, Oberkochen, Germany) connected with the computer-assisted stereological system CAST 2.0 (Olympus, Ballerup, Denmark). On pairs of orcein sections [distance: 3 μm; primary magnification (PM): 5×], the alveolar number was estimated as recently described for different mammalian lungs (Hyde et al., 2004; Ochs et al., 2004a, 2004b). From methylene blue sections (PM: 5×), the volume density of parenchyma in the lung and the volume density of alveoli in the parenchyma were estimated and multiplied by the lung volume, providing the total volume of alveoli. The mean size of an individual alveolus was determined by dividing the total volume of alveoli by their number. From pairs of toluidine blue sections (distance: 3 μm; PM: 63×; oil immersion), the number and the number-weighted mean volume of type II cells as well as of alveolar macrophages were estimated.

The ultrastructural stereological analysis (PM: 3,000–4,400×) was performed using a LEO EM 900 transmission electron microscope (Zeiss) combined with an image analysis system (AnalySIS; Soft Imaging Systems, Münster, Germany). Following systematic uniformly random sampling on pairs of ultrathin sections (distance: 100 nm), micrographs of corresponding type II cell profiles were taken. The volume densities of nuclei, mitochondria, and lamellar bodies as well as the apical, basolateral, and total cell surface density were estimated. All densities were multiplied by the mean type II cell volume, resulting in the total volume of nuclei, mitochondria, lamellar bodies, and the apical, basolateral, and total surface area per cell. Furthermore, the number of surfactant-storing lamellar bodies, their number-weighted mean volume, as well as their volume-weighted mean volume were estimated in type II cells. As a measure of the intracellular surfactant pool, as defined by morphological criteria, the total volume of lamellar bodies per lung was calculated as the product of the number of type II cells and the volume of lamellar bodies per cell.

Statistics

Data are given as mean (CV) of n = 5 mice per genotype, with CV = SD/mean. The nonparametric two-sided Mann-Whitney U-test was used to analyze the stereological data statistically. The test was performed using the Statistica 6.0 software (StatSoftInc, Hamburg, Germany). A value of P < 0.05 was considered to be significant.

RESULTS

  1. Top of page
  2. Abstract
  3. MATERIALS AND METHODS
  4. RESULTS
  5. DISCUSSION
  6. Acknowledgements
  7. LITERATURE CITED

Stereological data are summarized in Table 1, and light and electron micrographs illustrating the quantitative findings are shown in Figure 1. At the level of light microscopy, the morphological analysis revealed a decreased number and an increased size of alveoli in AD mice compared to WT (Fig. 1a and b). Furthermore, the numbers and sizes of type II cells as well as alveolar macrophages were increased in AD mice (Fig. 1c and d). The ultrastructural analysis showed no differences in the volumes of type II cell mitochondria or nuclei between the two groups. The total surface area of type II cells in AD mice was enlarged with a significant increase in apical as well as basolateral surface area. In both groups examined, the two surface proportions contributed equally to the whole surface area (data not shown). The total lamellar body volume per cell was significantly increased in the type II cells of AD mice. There were more lamellar bodies per type II cell in the AD group. The mean volume of a single lamellar body was not statistically different. The significant increase in the volume-weighted mean volume reflects therefore a larger variability of lamellar body size (Fig. 1e and f). The total volume of lamellar bodies per lung was increased threefold in AD mice. The variation analysis of all parameters revealed a minor contribution of the variation introduced by the stereological sampling design to the total observed variation (data not shown). Therefore, the precision of the stereological estimates was sufficient to ensure that the total observed variation was dominated by the biological variation between animals.

Table 1. Stereological data
ParameterWTA-D-
  • Data are means (CV) of n = 5 wild type (WT) as well as surfactant protein A and D double deficient (A-D-) mice.

  • Abbreviations of parameters: N, number, νN, number- weighted mean volume; νv, volume-weighted mean volume; V, total volume; S, surface area; alv, alveoli; type II, alveolar type II cells; AM, alveolar macrophages; nucl, nuclei; mito, mitochondria; lb, lamellar bodies; basolat, basolateral. The reference volumes are either the total lung volume (lung) or the number-weighted mean volume of alveolar type II cells (type II).

  • *

    p-value < 0.05

N(alv, lung) [106]12 (0.23)7 (0.11)*
νN(alv) [103 μm3]50 (0.22)104 (0.16)*
N(type II, lung) [106]15.3 (0.14)21.5 (0.15)*
νN(type II) [μm3]299 (0.15)525 (0.25)*
V(nucl, type II) [μm3]56 (0.15)78 (0.22)
V(mito, type II) [μm3]24.5 (0.19)29.1 (0.24)
V(lb, type II) [μm3]48 (0.25)102 (0.29)*
S(apical, type II) [μm2]112 (0.16)206 (0.23)*
S(basolat, type II) [μm2]164 (0.19)294 (0.27)*
S(total, typeII) [μm2]276 (0.17)499 (0.23)*
N(lb, type II)53 (0.28)91 (0.12)*
νN(lb) [μm3]0.9 (0.16)1.1 (0.22)
νv(lb) [μm3]1.0 (0.19)2.0 (0.55)*
V(lb, lung) [mm3]0.7 (0.37)2.2 (0.39)*
N(AM, lung) [106]2.0 (0.29)5.4 (0.76)*
νN(AM) [μm3]559 (0.19)1,709 (0.29)*
thumbnail image

Figure 1. a and b: The lung histology illustrates a decreased number and an increased size of alveoli in AD mice compared to WT. The photographs are taken from orcein-stained sections at the same magnification. The orcein staining points out elastic fibers at the alveolar openings. The recognition of these openings is essential for the estimation of the alveolar number. a: WT. b: AD. c and d: Light micrographs illustrate hyperplasia and hypertrophy of alveolar type II cells as well as increased number of enlarged alveolar macrophages in AD mice compared to WT. The photographs are taken from toluidine blue-stained semithin sections at the same magnification. Occasionally, giant surfactant-storing lamellar bodies can be noticed in alveolar type II cells. T, alveolar type II cell; M, AM. c: WT. d: AD. e and f: Electron micrographs illustrate alveolar type II cell morphology with more numerous lamellar bodies in AD mice compared to WT. The micrographs are taken from ultrathin sections at the same magnification. e: WT. f: AD.

Download figure to PowerPoint

DISCUSSION

  1. Top of page
  2. Abstract
  3. MATERIALS AND METHODS
  4. RESULTS
  5. DISCUSSION
  6. Acknowledgements
  7. LITERATURE CITED

The lung collectins, SP-A and SP-D, potentially contribute to the biophysical (alveolar stability) as well as the immunomodulatory (alveolar sterility) surfactant functions (Crouch and Wright, 2001; Hawgood and Poulain, 2001; McCormack and Whitsett, 2002). The present design-based stereological analysis characterizes parenchymal, alveolar type II cell, and alveolar macrophage alterations and thus provides quantitative data reflecting that chronic deficiency of SP-A and SP-D in mice leads to parenchymal remodeling, type II cell hyperplasia and hypertrophy, accumulation of enlarged alveolar macrophages, and disturbed type II cell surfactant metabolism. Since this study was performed using mice of B6/129Sv:CD-1 mixed genetic background (Hawgood et al., 2002), some variability due to differences in genetic background is possible. Littermates were used to minimize this variability.

The recently established unbiased estimation of alveolar number and size (Hyde et al., 2004; Ochs et al., 2004a) provides efficient parameters to compare lung morphology objectively, e.g., when different genotypes with emphysematous alterations are studied (Ochs et al., 2004b). The decrease in alveolar number together with an increase in mean alveolar size in AD mice underlines emphysema-like pathology (Hawgood et al., 2002). The extent of the emphysematous alterations is comparable to SP-D single deficient mice (Ochs et al., 2004b). However, direct comparisons await the analysis of fully backcrossed littermates. The pathological mechanisms that lead to the parenchymal remodeling in lung collectin-deficient mice remain to be further investigated.

The quantitative characterization of hyperplastic and hypertrophic alveolar type II cells by stereological means is preferable to qualitative microscopy, because objective comparisons are possible. The proliferation of type II cells in AD mice might be a reaction to lung inflammation. In different models of acute and chronic lung inflammation, type II cell proliferation and hypertrophy were demonstrated (Miller and Hook, 1990; Bryson et al., 1991; Kasper and Haroske, 1996; Fehrenbach, 2001; Homer et al., 2002). In human lung emphysema, the rate of proliferation of alveolar epithelial cells is enhanced (Yokohori et al., 2004). However, recent studies on the effects of an additional loss of GM-CSF in SP-D-deficient mice indicate that type II cell and intracellular surfactant alterations may not be causally related to the chronic inflammation and emphysema in SP-D-deficient mice (Ochs et al., 2004b).

The occasional enlargement of single lamellar bodies in SP-D-deficient mice does not lead to an increase in mean lamellar body size. However, it is reflected in an increased volume-weighted mean volume, thus indicating an increased variability in size. By using unbiased sampling techniques, stereology assesses the whole organ, not only the most severely affected regions focused by the researcher's eye. The present study demonstrates an elevated total volume of lamellar bodies per lung due to an increase in the number of type II cells and in the number of lamellar bodies per cell. This accumulation of intracellular surfactant, together with the progressive accumulation of intra-alveolar surfactant that was demonstrated previously (Hawgood et al., 2002), reflects metabolic disturbances either directly due to AD deficiency or connected with lung inflammation (Lesur et al., 1995; Viviano et al., 1995; Fehrenbach et al., 1998; Ikegami et al., 2000b). At present, it is not clear if the lung collectins directly influence type II cell proliferation and metabolism or rather indirectly by modulating lung inflammation in vivo. Recently, SP-A has been shown to influence surfactant metabolism under challenging conditions such as hyperventilation (Jain et al., 2003). A stereological approach to quantify lung structural alterations might be helpful to study AD mice challenged by various stimuli.

In conclusion, chronic deficiency of the lung collectins, SP-A and SP-D, in mice leads to emphysema-like pathology with fewer and larger alveoli, type II cell hyperplasia and hypertrophy, and an increased intracellular surfactant pool. The pathomechanisms responsible for these morphological alterations await further examination. The present study also underscores the value of quantitative morphology for the phenotype characterization of mutant mice. The design-based stereological approach presented here provides a framework for the quantitative lung structure analysis in gene-manipulated mice as well as potentially for the study of humans with surfactant deficiencies or other lung diseases.

Acknowledgements

  1. Top of page
  2. Abstract
  3. MATERIALS AND METHODS
  4. RESULTS
  5. DISCUSSION
  6. Acknowledgements
  7. LITERATURE CITED

Gratitude to S. Freese, A. Gerken, H. Hühn (Göttingen), C. Brown, J. Edmondson, and D. Ansaldi (San Francisco) for technical assistance and to C. Maelicke for checking the article. Supported by the Medical Faculty of the University of Göttingen (1400490; to M.O.); the Alexander von Humboldt Foundation Feodor Lynen Fellowship (to M.O.), and the National Institutes of Health (HL-24075 and HL-58047; to S.H.)

LITERATURE CITED

  1. Top of page
  2. Abstract
  3. MATERIALS AND METHODS
  4. RESULTS
  5. DISCUSSION
  6. Acknowledgements
  7. LITERATURE CITED
  • Botas C, Poulain F, Akiyama J, Brown C, Allen L, Goerke J, Clements J, Carlson E, Gillespie AM, Epstein C, Hawgood S. 1998. Altered surfactant homeostasis and alveolar type II cell morphology in mice lacking surfactant protein D. Proc Natl Acad Sci USA 95: 1186911874.
  • Bryson DG, McConnell S, McAliskey M, McNulty MS. 1991. Ultrastructural features of alveolar lesions in induced respiratory syncytial virus pneumonia of calves. Vet Pathol 28: 286291.
  • Chabot S, Salez L, McCormack FX, Touqui L, Chignard M. 2003. Surfactant protein A inhibits lipopolysaccharide-induced in vivo production of interleukin-10 by mononuclear phagocytes during lung inflammation. Am J Respir Cell Mol Biol 28: 347353.
  • Crouch E, Wright JR. 2001. Surfactant proteins A and D and pulmonary host defense. Annu Rev Physiol 63: 521554.
  • Cruz-Orive LM, Weibel ER. 1990. Recent stereological methods for cell biology: a brief survey. Am J Physiol Lung Cell Mol Physiol 258: L148L156.
  • Fehrenbach H, Ochs M. 1998. Studying lung ultrastructure. In: UhligS, TaylorAE, editors. Methods in pulmonary research. Basel: Birkhäuser. p 429454.
  • Fehrenbach H, Brasch F, Uhlig S, Weisser M, Stamme C, Wendel A, Richter J. 1998. Early alterations in intracellular and alveolar surfactant of the rat lung in response to endotoxin. Am J Respir Crit Care Med 157: 16301639.
  • Fehrenbach H. 2001. Alveolar epithelial type II cell: defender of the alveolus revisited. Respir Res 2: 3346.
  • Gardai SJ, Xiao YQ, Dickinson M, Nick JA, Voelker DR, Greene KE, Henson PM. 2003. By binding SIRPalpha or calreticulin/CD91, lung collectins act as dual function surveillance molecules to suppress or enhance inflammation. Cell 115: 1323.
  • Gundersen HJG, Jensen EB. 1985. Stereological estimation of the volume-weighted mean volume of arbitrary particles observed on random sections. J Microsc 138: 127142.
  • Hawgood S, Poulain FR. 2001. The pulmonary collectins and surfactant metabolism. Annu Rev Physiol 63: 495519.
  • Hawgood S, Ochs M, Jung A, Akiyama J, Allen L, Brown C, Edmondson J, Levitt S, Carlson E, Gillespie AM, Villar A, Epstein CJ, Poulain FR. 2002. Sequential targeted deficiency of SP-A and -D leads to progressive alveolar lipoproteinosis and emphysema. Am J Physiol Lung Cell Mol Physiol 283: L1002L1010.
  • Homer RJ, Zheng T, Chupp G, He S, Zhu Z, Chen Q, Ma B, Hite RD, Gobran LI, Rooney SA, Elias JA. 2002. Pulmonary type II cell hypertrophy and pulmonary lipoproteinosis are features of chronic IL-13 exposure. Am J Physiol Lung Cell Mol Physiol 283: L52L59.
  • Hyde DM, Tyler NK, Putney LF, Singh P, Gundersen HJG. 2004. Total number and mean size of alveoli in mammalian lung estimated using fractionator sampling and unbiased estimates of the Euler characteristic of alveolar openings. Anat Rec 277: 216226.
  • Ikegami M, Korfhagen TR, Bruno MD, Whitsett JA, Jobe AH. 1997. Surfactant metabolism in surfactant protein A-deficient mice. Am J Physiol Lung Cell Mol Physiol 272: L479L485.
  • Ikegami M, Whitsett JA, Jobe A, Ross G, Fisher J, Korfhagen T. 2000a. Surfactant metabolism in SP-D gene-targeted mice. Am J Physiol Lung Cell Mol Physiol 279: L468L476.
  • Ikegami M, Whitsett JA, Chroneos ZC, Ross GF, Reed JA, Bachurski CJ, Jobe AH. 2000b. IL-4 increases surfactant and regulates metabolism in vivo. Am J Physiol Lung Cell Mol Physiol 278: L75L80.
  • Jain D, Dodia C, Bates SR, Hawgood S, Poulain FR, Fisher AB. 2003. SP-A is necessary for increased clearance of alveolar DPPC with hyperventilation or secretagogues. Am J Physiol Lung Cell Mol Physiol 284: L759L765.
  • Kasper M, Haroske G. 1996. Alterations in alveolar epithelium after injury leading to pulmonary fibrosis. Histol Histopathol 11: 463483.
  • Korfhagen TR, Bruno MD, Ross GF, Huelsman KM, Ikegami M, Jobe AH, Wert SE, Stripp BR, Morris RE, Glasser SW, Bachurski CJ, Iwamoto HS, Whitsett JA. 1996. Altered surfactant function and structure in SP-A gene targeted mice. Proc Natl Acad Sci USA 93: 95949599.
  • Lesur O, Bouhadiba T, Melloni B, Cantin A, Whitsett JA, Begin R. 1995. Alterations of surfactant lipid turnover in silicosis: evidence of a role for surfactant-associated protein A (SP-A). Int J Exp Pathol 76: 287298.
  • McCormack FX, Whitsett JA. 2002. The pulmonary collectins, SP-A and SP-D, orchestrate innate immunity in the lung. J Clin Invest 109: 707712.
  • Miller BE, Hook GE. 1990. Hypertrophy and hyperplasia of alveolar type II cells in response to silica and other pulmonary toxicants. Environ Health Perspect 85: 1523.
  • Ochs M, Nyengaard JR, Jung A, Knudsen L, Voigt M, Wahlers T, Richter J, Gundersen HJG. 2004a. The number of alveoli in the human lung. Am J Respir Crit Care Med 169: 120124.
  • Ochs M, Knudsen L, Allen L, Stumbaugh A, Levitt S, Nyengaard JR, Hawgood S. 2004b. GM-CSF mediates alveolar epithelial type II cell changes but not emphysema-like pathology in SP-D deficient mice. Am J Physiol Lung Cell Mol Physiol 287: L1333L1341.
  • Scherle W. 1970. A simple method for volumetry of organs in quantitative stereology. Mikroskopie 26: 5760.
  • Sterio DC. 1984. The unbiased estimation of number and sizes of arbitrary particles using the disector. J Microsc 134: 127136.
  • Vedel Jensen EB, Gundersen HJG. 1993. The rotator. J Microsc 170: 3544.
  • Viviano CJ, Bakewell WE, Dixon D, Dethloff LA, Hook GE. 1995. Altered regulation of surfactant phospholipid and protein A during acute pulmonary inflammation. Biochim Biophys Acta 1259: 235244.
  • Weibel ER. 1979. Stereological methods: practical methods for biological morphometry. New York: Academic Press.
  • Wert SE, Yoshida M, LeVine AM, Ikegami M, Jones T, Ross GF, Fisher JH, Korfhagen TR, Whitsett JA. 2000. Increased metalloproteinase activity, oxidant production, and emphysema in surfactant protein D gene-inactivated mice. Proc Natl Acad Sci USA 97: 59725977.
  • Wright JR. 1997. Immunomodulatory functions of surfactant. Physiol Rev 77: 931962.
  • Wright JR. 2004. Host defense functions of pulmonary surfactant. Biol Neonate 85: 326332.
  • Wu H, Kuzmenko A, Wan S, Schaffer L, Weiss A, Fisher JH, Kim KS, McCormack FX. 2003. Surfactant proteins A and D inhibit the growth of gram-negative bacteria by increasing membrane permeability. J Clin Invest 111: 15891602.
  • Yokohori N, Aoshiba K, Nagai A. 2004. Increased levels of cell death and proliferation in alveolar wall cells in patients with pulmonary emphysema. Chest 125: 626632.