SEARCH

SEARCH BY CITATION

LITERATURE CITED

  • Ascenzi A, Benvenuti A. 1986. Orientation of collagen fibers at the boundary between two successive osteonic lamellae and its mechanical interpretation. J Biomech 19: 455463.
  • Ascenzi A, Bonucci E. 1964. The ultimate tensile properties of single osteons. Anat Rec 158: 160183.
  • Ascenzi A, Bonucci E. 1967. The tensile properties of single osteons. Anat Rec 158: 375386.
  • Ascenzi A, Bonucci E. 1968. The compressive properties of single osteons. Anat Rec 161: 377392.
  • Ascenzi M-G, Ascenzi, A, Benvenuti A, Burghammer M, Panzavolta S, Bigi A. 2003. Structural differences between “dark” and “bright” isolated human osteonic lamellae. J Struct Biol 141: 2233.
  • Bonucci, E. 1984. The structural basis of calcification. In: RuggeriA, MottaPM, editors. Ultrastructure of the connective tissue matrix. Boston: Martinus Nijhoff. p 165191.
  • Boyde A. 1984. Methodology of calcified tissue specimen preparation for SEM. In: DicksonGR, editor. Methods of calcified tissue preparation. Amsterdam: Elsevier. p 251307.
  • Boyde A, Riggs CM. 1990. The quantitative study of the orientation of collagen in compact bone slices. Bone 11: 3539.
  • Boyde A, Bianco P, Portigliatti-Barbos M, Ascenzi A. 1984. Collagen orientation in compact bone. I. A new method for the determination of the proportion of collagen parallel to the plane of compact bone sections. Metab Bone Dis Relat Res 5: 299307.
  • Bromage TG. 1992. Microstructural organization and biomechanics of the macaque circumorbital region. In: SmithP, TchernovE, editors. Structure, function and evolution of teeth. London: Freund Publishing House. p 257272.
  • Francillon-Vieillot H, de Buffrénil V, Castanet J, et al. 1991. Microstructure and mineralization of vertebrate skeletal tissues. In: CarterJG, editor. Skeletal biomineralization: Patterns, processes and evolutionary trends. New York: Van Nostrand Reinhold. p 471530.
  • Gebhardt W. 1905. Über funktionell wichtige Anordnungsweisen der feineren und gröberen Bauelemente des Wirbeltierknochens. Arch Entwickl Org 20: 187322.
  • Giraud-Guille MM. 1988. Twisted plywood architecture of collagen fibrils in human compact bone osteons. Calcif Tissue Int 42: 167180.
  • Goldman HM, Kindsvater J, Bromage TG. 1999. Correlative light and backscattered electron microscopy of bone. I. Specimen preparation methods. Scanning 21: 4043.
  • Goldman HM, Bromage TG, Thomas CDL, Clement JG. 2003. Preferred collagen fiber orientation at the human mid-shaft femur. Anat Rec 272A: 434445.
  • Kalmey JK, Lovejoy CO. 2002. Collagen fiber orientation in the femoral necks of apes and humans: Do their histological structures reflect differences in locomotor loading? Bone 31: 327332.
  • Marotti G. 1993. A new theory of bone lamellation. Calcif Tissue Int 53 (Suppl 1): S47S56.
  • Martin RB, Boardman DL. 1993. The effects of collagen fiber orientation, porosity, density, and mineralization on bovine cortical bone bending properties. J Biomech 26: 10471054.
  • Martin RB, Ishida J. 1989. The relative effects of collagen fiber orientation, porosity, density, and mineralization on bone strength. J Biomech 22: 419426.
  • Mason MW, Skedros JG, Bloebaum R. 1995. Evidence of strain-mode-related cortical adaptation in the diaphysis of the horse radius. Bone 17: 229237.
  • McMahon JM, Boyde A, Bromage TG. 1995. Pattern of collagen fiber orientation in the ovine calcaneal shaft and its relation to locomotor induced strain. Anat Rec 242: 147158.
  • Portigliatti-Barbos M, Bianco P, Ascenzi A. 1983. Distribution of osteonic and interstitial components in the human femoral shaft with reference to structure, calcification and mechanical properties. Acta Anat 115: 178186.
  • Portigliatti-Barbos M, Bianco P, Ascenzi A, Boyde A. 1984. Collagen orientation in compact bone. II. Distribution of lamellae in the whole of the human femoral shaft with reference to its mechanical properties. Metab Bone Dis Relat Res 5: 309315.
  • Riggs CM, Lanyon LE, Boyde A. 1993a. Functional associations between collagen fibre orientation and locomotor strain direction in cortical bone of the equine radius. Anat Embryol (Berl) 187: 231238.
  • Riggs C, Vaughan L, Evans G, Lanyon L, Boyde A. 1993b. Mechanical implications of collagen fibre orientation in cortical bone of the equine radius. Anat Embryol (Berl) 187: 239248.
  • Rho J-Y, Kuhn-Spearing L, Zioupos P. 1998. Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20: 92102.
  • Rossert J, de Crombrugghe B. 1996. Type I collagen: Structure, synthesis, and regulation. In: BilezikianJP, RaiszLG, RodanGA, editors. Principles of bone biology. San Diego: Academic Press. p 127142.
  • Simkin A, Robin G. 1974. Fracture formation in differing collagen fiber pattern of compact bone. J Biomech 7: 183188.
  • Skedros JG, Su SC, Bloebaum RD. 1997. Biomechanical implications of mineral content and microsructural variations in cortical bone of horse, elk, and sheep calcanei. Anat Rec 249: 297316.
  • Swartz SM, Bertram JEA, Biewener AA. 1989. Telemetered in vivo strain analysis of locomotor mechanics of brachiating gibbons. Nature 342: 270272.
  • Takano Y, Turner CH, Owan I, et al. 1999. Elastic anisotropy and collagen orientation of osteonal bone are dependent on the mechanical strain distribution. J Orthop Res 17: 5966.
  • Traub W, Arad T, Weiner S. 1992. Growth of mineral crystals in turkey tendon collagen fibers. Connect Tiss Res 28: 99111.
  • Wang X, Li X, Yamashita J, Agrawal, CM. 2001. A novel method for quantifying normal collagen molecules in non calcified and calcified collagen in bone. Proceedings of the Orthopaedic Research Society, February 25–28, 2001: 0470.