A transporter for phenolamine uptake in the arthropod CNS


  • Presented at the XXII International Congress of Entomology Symposium: Cellular Actions of Biogenic Amines, Brisbane, Australia, August 2004.


Biogenic monoamines play central roles in the nervous control of physiological processes in both vertebrates and invertebrates, each using a suite of neurotransmitters tailored through evolution. Among the ancillary proteins necessary for the deployment of monoamine transmitters are membrane-bound transporters that enable the reuptake of synaptically released transmitters. Transporters responsible for monoamine uptake include a novel transporter discovered in a pest insect, the cabbage looper Trichoplusia ni, which has high affinity for the phenolamines octopamine and tyramine. Sequence analysis suggests that this transporter has no direct ortholog in the sequenced genomes of model invertebrates. We report here a preliminary investigation into the true extent of the distribution of this type of transporter using RT-PCR with a set of degenerate primers selective for monoamine transporters on cDNAs made from the nervous systems of a range of arthropods. PCR products encoding the N-terminal region of orthologs of this transporter were detected in a variety of insect orders, as well as in a crustacean, but were not found in representatives of either the Diptera or the Hymenoptera. Thus, although this transporter is widely expressed in invertebrates, there are various invertebrates that appear to have evolved alternate ways of recycling phenolamine neurotransmitters released at the nerve synapse. Arch. Insect Biochem. Physiol. 59:172–183, 2005. Canadian Crown Copyright 2005 Published 2005 Wiley-Liss, Inc.